
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Application-Level Caching Approach Based on Enhanced Aging

Factor and Pearson Correlation Coefficient

Mulki Indana Zulfa a,*, Sri Maryani b, Ardiansyah c, Triyanna Widiyaningtyas d, Waleed Ali e
a Electrical Engineering Department, Jenderal Soedirman University, Kalimanah, Purbalingga, 53371, Indonesia

b Mathematic Department, Jenderal Soedirman University, Karangwangkal, Purwokerto, 53122, Indonesia
c Informatic Department, Ahmad Dahlan University, Kragilan, Bantul, 55191, Indonesia

d Electrical Engineering Department, Malang State University, Lowokwaru, Malang, 65145, Indonesia
e Information Technology Department, King Abdulaziz University, Rabigh, 25732, Saudi Arabia

Corresponding author: *mulki_indanazulfa@unsoed.ac.id

Abstract— Relational database management systems (RDBMS) have long served as the fundamental infrastructure for web

applications. Relatively slow access speeds characterize an RDBMS because its data is stored on a disk. This RDBMS weakness can be

overcome using an in-memory database (IMDB). Each query result can be stored in the IMDB to accelerate future access. However,

due to the limited capacity of the server cache in the IMDB, an appropriate data priority assessment mechanism needs to be developed.

This paper presents a similar cache framework that considers four data vectors, namely the data size, timestamp, aging factor, and

controller access statistics for each web page, which serve as the foundation elements for determining the replacement policy whenever

there is a change in the content of the server cache. The proposed similarCache employs the Pearson correlation coefficient to quantify

the similarity levels among the cached data in the server cache. The lowest Pearson correlation coefficients cached data are the first to

be evicted from the memory. The proposed similarCache was empirically evaluated based on simulations conducted on four IRcache

datasets. The simulation outcomes revealed that the data access patterns, and the configuration of the allocated memory cache

significantly influenced the hit ratio performance. In particular, the simulations on the SV dataset with the most minor memory space

configuration exhibited a 2.33% and 1% superiority over the SIZE and FIFO algorithms, respectively. Future tasks include building a

cache that can adapt to data access patterns by determining the standard deviation. The proposed similarCache should raise the Pearson

coefficient for often available data to the same level as most accessed data in exceptional cases.

Keywords— Application-level caching; pearson correlation coefficient; cached data; hit ratio.

Manuscript received 24 Sep. 2023; revised 18 Nov. 2023; accepted 13 Dec. 2023. Date of publication 31 Mar. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Relational database management systems (RDBMS) have

been the fundamental infrastructure for most web applications

since computers proliferated [1]. With information considered

a primary asset, efficient and rapid data storage, access, and

manipulation are of utmost importance [2]. A relational

database management system (RDBMS) facilitates the

construction of intricate applications through its structured

table arrangement and interpretable associations, enabling

developers to run intricate data queries [3]. Furthermore,

RDBMS provides notable benefits in data integrity, security,

and the capability to handle concurrent transactions [1]. When

data can be accessed and modified concurrently by several
users in real-world online applications, the properties above

assume significant importance [2]. Thus, selecting an

appropriate Relational Database Management System (RDBMS)

and implementing effective database design play crucial roles in

determining the triumph of online applications [3].

Many web applications continue to employ RDBMS as
their primary storage medium due to its ability to maintain

well-structured data [4], [5]. However, these RDBMS

architectures are characterized by relatively slow access

speeds as data are stored on disk [6]. In contrast, in-memory

database (IMDB) technology has experienced rapid growth.

It is widely adopted by cloud service providers such as

Amazon Web Services, Google Cloud Platform, IBM, and

Microsoft Azure [7]–[9]. IMDB stores data in computer

memory rather than on disk, resulting in significantly faster

access speeds [10], [11].

31

JOIV : Int. J. Inform. Visualization, 8(1) - March 2024 31-37

IMDB, also known as a NoSQL database [12], [13],

realizes extensive application as a server cache to alleviate

server workloads and reduce internet latency [14], [15].

However, IMDB exhibits a notable limitation in that it does

not guarantee suitable ACID properties [4] [16], including

desirable atomicity, consistency, isolation, and durability.

Consequently, IMDB is not yet positioned to supplant

RDBMS as the primary database system [9]. Moreover,

implementing IMDB within web applications hosted on

shared-hosting platforms replicated and distributed across
various geographic locations poses challenges in maintaining

privacy and trust [17]. Thus, a coalescence of IMDB and

RDBMS concepts can be leveraged to support transactions

that ensure ACID compliance while preserving swift data

access performance [16]. A pioneering example of such

integration is exemplified by Megastore [18]. In the

Megastore framework [18], data are partitioned to guarantee

the isolation of ACID semantics within each partition, thereby

upholding the consistency property.

Determining data priorities thus becomes a crucial

consideration due to the minimal memory capacity. To
address this issue, some research has utilized machine

learning methods to create replacement policies or memory

content replacement methods [19]. However, using machine

learning techniques in this context entails computationally

intensive training processes [20], [21]. Therefore, in recent

years, several researchers have introduced the concept of

application-level caching (ALC), which is more flexible and

can be implemented in real-world web applications [22]. The

schematic caching framework [23] proposes a query parser to

break down query results into unique key values to be stored

in IMDB. The Hyperbolic caching framework [24] proposes
access frequency and access time variables to assess the

priority of cached data before it is stored in the cache server.

In addition, an APLCache caching framework [20] proposes

reactive and proactive caching mechanisms by studying user

access behavior based on access frequency, memory

consumption, and staticity. However, several caching

frameworks fail to address changeable decisions that lack

robustness due to the necessity of aligning caching logic with

web development architecture.

This research proposes a caching framework by

considering the access controller in the MVC architecture

(Models-Views-Controllers) combined with several other
variables such as access count, data size, timestamp, and

aging factor to make the caching decision more

comprehensive. Furthermore, all caching decision variables

are formulated using the Pearson correlation coefficient to

calculate the similarity of each cached data item with respect

to its top-accessed counterparts. When a request for memory

cache replacement arises, the data item with the lowest

correlation level is removed from memory first.

II. MATERIALS AND METHODS

A. Related Works

Application-level caching is a software development

methodology that leverages memory as a popular data storage

medium, enabling repeated access without the need to retrieve

data from the Relational Database Management System

(RDBMS) [25]. Typically, ALC approaches involve manual

implementation by application development teams, including

the development of code functions that direct data storage into

memory [20]. This approach is time-consuming and requires

extensive source code modifications in response to any

changes in business processes that affect cached data

priorities. ALC approaches must therefore consider factors

such as hit ratio performance, data access characteristics, and

data change frequencies [26].

ALC research has focused on three methods: weighting,

machine learning, and optimization. Ma et al. [27] proposed
the caching framework WSCRP, which calculates the weight

of cached data by incorporating variables such as data size

(S�), network cost (����), request time start-end (Δt�), aging

factor (
), and access frequency (��).Generally, the

corresponding weight is as described in Eq. (1). Ma et al. [28]

also introduced the caching framework WGDSF, which

considers the weight of document types (WDT) and their

access frequency (WTF). This is then combined with the

greedy dual size frequency (GDSF) caching algorithm on the

aging factor variable (
) and network cost (��), as seen in

Eq. (2).

Akbari et al. [19] proposed the FPRA caching framework

based on machine learning, utilizing the Fuzzy C-Means

(FCM) algorithm. Each cached data item in memory is

grouped into respective clusters based on three parameters:

access recency (PR), access frequency (PF), and reference

rate ����(�). When there is a need to store new data in

memory, FPRA removes the member of the cluster with the

smallest cumulative reference time (Δt�) first, as indicated
by Eq. (3). Zhang et al. [29] suggested the use of data cache

clustering with variables R (interval time), F (frequency), and

S (size) employing the K-Means algorithm. Variables R and S

are sorted based on their smallest values, while variable F is

sorted based on its largest value. Cached data with the

smallest cumulative RFS value is removed first when there is

a need to store new data, followed by Eq. (4):

�� = S�
����

∗
�
�� ∗ Δt� (1)

�(�) =
 + ��(�) ∗ ��� (�) ∗ ���(�) (2)

��� = (Δt�) − (k − 1) ($%&)

�'(
 (3)

���),*

= +(,�- − ,�-). + (,�. − ,�.). + ⋯ + (,� − ,�).
(4)

0� = 1�
2�

 (5)

In addition to these two primary caching methods, caching
weighting and caching mining, Blankstein et al. [30]

introduced the hyperbolic caching (HC) framework, which

calculates cached data priority (03) using access frequency

(1�) and access time (23) since data entered the cache, as

illustrated in Eq. (5). The fundamental concept behind HC is

to separate the cached data priority calculation function from

its structure. This approach differs from previous proposals

where the cached data priority calculation method influenced

its position in memory. Another method within the ALC

realm was suggested by Mertz et al., which achieved

32

simplicity by embedding caching logic code to consistently

provide data services directly from memory using method

calls [20] [26].

Mertz et al. [20] proposed a reactive caching mechanism

using method calls while the application is running and then

built its caching model based on the nested cacheability

pattern [31] [22]. This nested caching pattern approach is

prone to suboptimal solutions. Their research was then

improved with a metaheuristic optimization method using Ant

Colony and Genetic Algorithm algorithms so that it is not
easily trapped in local optimum solutions [32]. The data cache

weighting methods proposed by [31] and [22] are also

challenged at determining the optimal solution because they

rely on greedy methods completely. In addition to these

studies, a machine learning-based caching system using FCM

has also been proposed, but this research will be difficult to

implement in real-world DBMS web applications because it

adds computationally free databases, web servers, and dataset

training. Although these studies have weaknesses, the concept

of using aging factors in [28] and [32] can be well adopted to

solve the problem of cache pollution. Meanwhile, the concept
of calculating the proximity distance between two data caches

using Euclidean distance [19] as a caching decision

consideration was eventually adopted into Pearson correlation

since this method more strongly refers to the substance of the

linear relationship between two data caches. Furthermore,

method calls proved to be reliable for implementation in real-

world web applications [22].

Based on the literature study, the proposed similarCache

framework fills a research gap in application-level caching for

real-world web applications. This research is motivated by the

convenience and ease offered by systems with method calls,
while recognizing that each cached data item possesses

numerous properties that can be leveraged to propose a robust

and comprehensive cache replacement policy. Therefore, this

paper presents a caching framework denoted as similarCache,

which adopts method calls to map each data access to its

respective controller. The relationship between data and

controllers stands as a key element that necessitates

continuous updates. Subsequently, the coefficient of

correlation for each cached data item is computed concerning

the most frequently accessed data items at that moment.

Cached data items with the lowest correlation coefficients are

evicted from memory first. The operational mechanism of the
proposed similarCache framework is described below.

B. Look-Aside Caching

The proposed similarCache framework employs a

topological look-aside caching approach to ensure that every

data request is promptly searched within the memory. This

technique is implemented because the primary objective of

ALC is to enhance user-side response times. Internet users

tend to bypass and seek alternative websites if they encounter
slow response times [33] [34]. Response time is a critical

metric for developers of web-based applications and cloud

network infrastructure managers because it can significantly

impact user satisfaction and comfort [35] [36]. The

operational mechanism of the look-aside caching architecture,

as illustrated in Fig. 1, is described as follows.

Based on Fig. 1, the look-aside caching adopted by the

similarCache proposal prioritizes data responses sourced

from the server cache. The caching system receives the signal

from the client and sends it to the cache and database

controllers. The cache controller looks for the requested data.

If HIT or data are found, these data are immediately given

back to the client. However, if the requested data is not found,

then the data request signal received by the database

controller is immediately sent to the RDBMS. The RDBMS

provides the requested data to the database controller and

forwards it to the controller cache. The cache controller stores

the data as new in cache memory and then forwards it directly
to the client.

Fig. 1 Look-aside caching mechanism [37]

C. Method Calls

Fig. 2 Method calls mechanism

Fig. 2 provides an illustration of how method calls function

within a web application, effectively mapping each URL

access within the application server. In many cases, web

applications built using the MVC (Models-Views-
Controllers) framework feature multiple controllers

responsible for interacting with the database. However, there

are instances when only a select few controllers are in high

demand. For instance, we consider an academic information

system at a university. At the start of the semester, the

StudyPlan Controller sees its highest access frequency, but

toward the end of the semester, the StudyResult Controller

becomes the most heavily accessed. Access patterns for these

controllers remain relatively consistent, underscoring the

importance of method calls in breaking down access to each

data ID. As a result, method calls vitally contribute to
pinpointing the currently popularly accessed controllers, thus

influencing the prioritization of data loaded into them.

D. Correlation Coefficient

The proposal of the similarCache framework, which

calculates the correlation coefficient for each cached data item

with the top-accessed data, draws inspiration from the caching

cluster model [19]. Essentially, caching system technology

33

must be capable of swiftly determining whether a piece of

data should be placed in memory. Consequently,

implementing a caching policy based on a machine learning

approach can be challenging to realize in practice. However,

a different scenario arises when machine learning technology

is utilized to analyze user data access patterns, which

subsequently influence the selection of items offered by a

marketplace, for example.

Thus, the similarCache framework proposal adopts the

concept of similarity calculation of the caching cluster model
[19] as a method for determining the priority of data to be

placed in memory. Whenever similarCache needs space to

accommodate new data in memory, it must perform two

fundamental tasks: (1) establish the top-accessed data and (2)

calculate the correlation coefficient for each data item in

memory concerning the top-accessed data. This concept for

top-accessed data resembles the notion of centroids that are

used for clustering algorithms in machine learning. Based on

our prior research following [38], we have determined that

using the least recently used value and aging value of the

Greedy-Dual Size Frequency (GDSF) algorithm offers
respective advantages, including the capability to implement

different access patterns. Therefore, we assign our top-

accessed data values based on the least recently used data, the

aging factor 4(�), access frequency �(�), network cost �(�) and

data size �(�), as shown in Eq. (6). Ultimately, data with the

lowest correlation coefficient will be removed to make room

for new data to occupy memory. Eq. (7) represents the

Pearson correlation coefficient formula between two cached

data 56,3, 738 used by the similarCache framework to make

caching decisions with its top-accessed (,). The next section

will provide a more detailed explanation of the data vectors

that similarCache employs for computing this correlation

coefficient:

4(�) =
 + �(�) ∗ �(�)
�(�)

 (6)

5(,, 7) = ∑ (,���'- − ,) × (7� − 7)
;∑ (∆,�).��'- × ;∑ (∆7�).��'-

 (7)

E. The Proposed SimilarCache
TABLE 1.

WEBSITE DATA PROPERTIES.

No Properties Example 1

1 iddata 4242106418
2 URL http://1stnatbk.com/images/2236int_r13

_c1.gif
3 controller /images/
4 data 2236int_r13_c1.gif
5 timestamp 1282592384.330 (baseline: top-accessed

data)
7 size 465 KB

1=>?(@A��B) = 1
1 �2(�) − �2C��

�2CD) − �2C��
�

�'-
 (8)

Data vectors in the web application domain typically

possess several properties, as indicated in Table 1.

SimilarCache records every access statistic for these data
items. Subsequently, these data can be revisited if

similarCache needs to execute a replacement policy, as

illustrated in Fig. 2. Notably, each time a replacement policy

is executed, the top-accessed data are reset by similarCache.

All other property values associated with these top-accessed

data serve as the baseline for calculating the correlation

coefficients for all cached data items within memory.

The similarCache framework proposal designates recently

used data as the top-accessed data, as based on our previous

research findings, the recently used data property

demonstrates good caching performance [38]. However, it is

essential to note that the value of the recently used data
property may not be entirely reliable because its performance

in specific data access patterns is no better than that of cost-

based and aging factor-based algorithms [32]. Therefore, the

similarCache framework proposal also incorporates an aging

factor (Eq. 6) In the final calculation of data similarity using

the Pearson correlation coefficient.

Fig. 3 The Pearson correlation coefficient in the proposed similar cache

Figure 3 demonstrates the functioning of the similarCache

system, which uses all cached data attributes mentioned in

Table 1 and the aging factor value derived from Equation 6.

According to Equation 7, the variable x represents the

property values of the most frequently requested data,

whereas the variable y represents the property values of all

other cached data items. The correlation coefficients for all

cached data items in memory are determined about the most

frequently accessed data at that specific moment.
Consequently, the data item stored in the cache with the

lowest correlation coefficient is prioritized for removal from

the memory and replaced with different data. An innovative

idea implemented in this study is the inclusion of the

controller access patterns while calculating the final

similarity. This concept is implemented based on our

acknowledgment that controller access statistics in web

applications may display fluctuations. Consequently, we

apply the standard min-max approach to normalize each

controller access (�2(�)) using Equation 8. The outcome of this

normalizing procedure produces controller access statistics

that range from 0 to 1. Once all values in Table 1 have been

normalized, the proposed similarCache architecture will

compute the cached data for all data that is currently being

accessed the most. This technique is implemented whenever
there is a request to allocate storage for a new data cache. The

cache server will remove the data cache that has the lowest

Pearson Coefficient value and replace it with the new data

cache.

The proposed similarCache framework aims to overcome

the technical constraints in application-level caching research

for real-world online applications by implementing proven

strategies that enhance hit ratio performance. The proposed

34

similarCache has multiple benefits, as seen by the description

of the proposed technique in Figure 2. One advantage of

similarCache is its capacity to minimize cache pollution by

selecting the least recently used material as a reference for

caching before inserting it into the server cache. The LRU

algorithm has been demonstrated to be highly effective in

achieving a high hit ratio [38]. Another benefit is that the

caching choice is more thorough as it considers several

factors, including the access controller, access count, data

size, date, and aging factor.
The design of the caching system must be comprehensively

considered so that it does not cause network bottlenecks and

reduce the performance of the database and web server.

Generally, caching systems are developed uniquely by

researchers according to the case study, whether the goal is to

increase the hit ratio or reduce the bandwidth usage by

maximizing the byte hit ratio [39]. This decision represents a

trade-off that must be chosen in designing a caching system

[40]. Not all goals can be simultaneously realized, i.e., the

features of one caching algorithm cannot be entirely superior

to those of other caching algorithms [41] [42].

III. RESULTS AND DISCUSSION

A. Result

Based on the simulations conducted on four IRcache

datasets, the hit ratio (HR) performance of the proposed

similarCache framework proves to perform well when

compared to the commonly used SIZE and FIFO algorithms

for implementing replacement policies. These four IRcache

datasets exhibit varying access patterns, resulting in distinct

maximum hit ratio performances. The maximum hit ratio
performance is observed when utilizing the largest memory

size configuration, analogous to the scenario where all data

can be perfectly accommodated within the caching server's

memory. However, practical instances are faced with data

access growth consistently outpacing and exceeding the

memory capacity that can be allocated. Thus, the proposition

of an appropriate replacement policy method can significantly

maximize the utility of the constructed caching system.

Fig. 4 HR Performance Using the BO2 Dataset

Fig. 4 illustrates the hit ratio performance using the BO2

dataset, as characterized by moderately cacheable requests

compared to other datasets. Based on the maximum memory

size configuration, all three replacement policy methods

achieve an optimal hit ratio performance of 34.67%. The hit

ratio performance of the proposed similarCache framework

with the smallest memory configuration reaches 19.67%, only

1.33% behind the FIFO algorithm. However, when the

memory configuration is increased twofold, the similarCache

framework outperforms the others with hit ratio performances

of 32.67%, 31%, and 31.33%, respectively. In the final

configuration, all three cache replacement methods achieve

optimal hit ratio performance.

Fig. 5 HR Performance Using the SV Dataset

Fig. 5 illustrates the hit ratio performance on the SV

dataset. Based on our statistical information, the SV dataset

features the highest number of unique requests, resulting in

the lowest hit ratio performance among the three datasets. The

highest hit ratio performance of 14.33% can only be achieved

with the largest cache configuration. This result is markedly
different from the simulations on the BO2 dataset, where hit

ratio performance was achieved in the last three memory

configurations. The proposed similarCache framework

exhibits the best hit ratio performance of 6.33%, surprisingly

in the smallest memory configuration. In this configuration,

similarCache outperforms the SIZE and FIFO algorithms by

2.33% and 1%, respectively.

Fig. 6 HR Performance Using the UC Dataset

Fig. 6 and Fig. 7 showcase the simulation outcomes of

similarCache on the UC and NY datasets, respectively. The

NY dataset stands out due to its significantly lower count of

unique requests compared to the other three datasets. This

unique attribute enables the system to achieve the highest hit
ratio performance because it can accommodate a vast amount

of data in a memory cache. Another noteworthy distinction is

that in the last four configurations, all replacement policy

35

methods manage to attain optimal hit ratio performance. In

these scenarios, application server administrators reap

substantial benefits, as they are spared the need for significant

investments in large memory capacities. However, the access

patterns observed in the NY dataset represent an anomaly,

resembling a viral access phenomenon that occurs briefly

during specific times and then quickly dissipates.

Fig. 7 HR Performance Using the NY Dataset

B. Discussion

Based on the simulation results from the four IRcache

datasets, the proposed similarCache framework presents a

distinct approach to handling each access to the application

database. In the current era of artificial intelligence and large
datasets, we recognize the growing need for information

systems to adopt more comprehensive considerations before

making decisions. Web-based applications that continue to

rely on RDBMS benefit from a dependable intermediary to

provide swift responses to frequently recurring access

requests for the same popular data. As a result, research in

application-level caching at the application level remains an

open and evolving field.

Our extensive literature review reveals a multitude of

studies in application-level caching, each offering unique

perspectives and valuable insights.

Blankstein et al. proposed the hyperbolic caching

framework, which employs a simple calculation concept 0� =�E
�E

 for caching decisions. However, this approach has a notable

limitation—it does not consider data size, potentially
diminishing the prospects of enhancing hit ratio performance

for small-sized data. Another framework, APLcache, was

introduced by Mertz et al., featuring the development of both

proactive and reactive caching components, which adds

significant complexity to the caching decision-making

process. The observed hit ratio performance improvement,

approximately 2.78%, appears disproportionate when

weighed against the intricacies of the caching system it

proposes. Even our earlier research on the LRU-GENACO

framework demonstrated algorithmic complexity that did not

yield commensurate hit ratio performance improvements,
merely achieving a 1% increase.

We acknowledge that there is inevitably a trade-off in the

objectives of the caching system being constructed. The

choice may involve improving the hit ratio at the expense of

increased computational load or prioritizing energy efficiency

in the server environment, which could lead to a decrease in

hit ratio performance or response time due to constrained

resources. However, the performance of the similarCache

framework concept is less beneficial in cases where there is a

significant increase in access to specific cached material, such

as during a viral phenomenon. In general, cache servers

prioritize caching material that is frequently accessed,

whereas similarCache aims to proactively address this issue

to avoid cache pollution.

The subsequent similarCache will be designed to adapt to

changing data access patterns. The three datasets utilized in

the preceding simulation exhibit common data access
patterns. However, due to the need for improved performance

at smaller cache sizes, the access patterns on the SV dataset

vary considerably for the proposed similarCache. We began

to develop the idea that, in the event of an access abnormality,

a proposed similarCache can efficiently ascertain the

distribution of data access patterns by employing standard

deviation calculations. The suggested similarCache should

have the capability to increase the Pearson coefficient for data

that has a large number of visits, particularly for top-accessed

data, in the case of an anomaly.

IV. CONCLUSION

This study presents a web-based application-level caching

solution that employs method calls to link controller accesses

with database query results. This paper has the main

contribution of the similarCache framework employs the

Pearson correlation coefficient to prioritize the replacement

of data in the server cache. The performance of the system is

evaluated by analyzing the hit ratio using IRcache datasets.

The simulation findings indicate that the data access patterns,
and cache size significantly influence the hit ratio

performance. Although the store capacity is restricted,

similarCache enhances the efficiency of cache memory

consumption. Simulations on the SV dataset demonstrate that

the proposed similarCache outperforms the commonly used

SIZE and FIFO techniques by 2.33% and 1%, respectively.

The future work involves developing a comparable cache that

can adapt to changes in data access patterns by calculating the

present standard deviation. If an abnormality occurs, the

proposed similarCache should have the capability to elevate

the Pearson coefficient for data that is frequently accessed to
the same level as data that is accessed the most.

ACKNOWLEDGMENT

This research was funded by the Indonesian Ministry of

Education, Culture, Research and Technology through the

DRTPM research with number 2529/UN23/PT.01.02/2023.

REFERENCES

[1] T. Connolly and C. Begg, Database Systems : A Practical Approach

to Design Implementation, and Management. Pearson, 2014.

[2] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System

Concepts. McGraw-Hill, 2010.

[3] C. J. Date, An Introduction to Database Systems. Pearson, 2004.

[4] M. Indrawan-Santiago, “Database Research: Are We at a Crossroad?

Reflection on NoSQL,” 2012 15th International Conference on

Network-Based Information Systems, Sep. 2012, doi:

10.1109/nbis.2012.95.

[5] G. Karnitis and G. Arnicans, “Migration of Relational Database to

Document-Oriented Database: Structure Denormalization and Data

Transformation,” 2015 7th International Conference on

Computational Intelligence, Communication Systems and Networks,

Jun. 2015, doi: 10.1109/cicsyn.2015.30.

36

[6] M. I. Zulfa, R. Hartanto, and A. E. Permanasari, “Caching strategy for

Web application – a systematic literature review,” International

Journal of Web Information Systems, vol. 16, no. 5, pp. 545–569, Oct.

2020, doi: 10.1108/ijwis-06-2020-0032.

[7] W. Vogels, “Scaling Amazon ElastiCache for Redis with Online

Cluster Resizing.”

[8] I. Amazon Web Services, “Use Cases and How ElastiCache Can

Help.”

[9] K. Kaur, R. Rani, C. Sci, and E. Deptt, “Modeling and Querying Data

in NoSQL Databases,” in IEEE International Conference on Big Data,

2013.

[10] H. K. Lee, B. S. An, and E. J. Kim, “Adaptive Prefetching Scheme

Using Web Log Mining in Cluster-Based Web Systems,” 2009 IEEE

International Conference on Web Services, Jul. 2009, doi:

10.1109/icws.2009.127.

[11] M. Kusuma, Widyawan, and R. Ferdiana, “Performance comparison

of caching strategy on wordpress multisite,” 2017 3rd International

Conference on Science and Technology - Computer (ICST), Jul. 2017,

doi: 10.1109/icstc.2017.8011874.

[12] W. Puangsaijai and Sutheera Puntheeranurak, “A Comparative Study

of Relational Database and Key-Value Database for Big Data

Applications,” in International Electrical Engineering Congress,

2017, pp. 8–10.

[13] D. J. Carlson, Ebook Redis in Action. Manning Publications, 2013.

[14] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and W. Zwaenepoel,

“Caching Dynamic Web Content: Designing and Analysing an

Aspect-Oriented Solution,” Middleware 2006, pp. 1–21, 2006, doi:

10.1007/11925071_1.

[15] Y. K. Alae El Alami, Mohamed Bahaj, “Supply of a Key Value

Database Redis In-Memory by Data from a Relational Database,” in

IEEE Mediterranean Electrotechnical Conference, IEEE, 2018, pp.

46–51.

[16] A. E. Lotfy, A. I. Saleh, H. A. El-Ghareeb, and H. A. Ali, “A middle

layer solution to support ACID properties for NoSQL databases,”

Journal of King Saud University - Computer and Information

Sciences, vol. 28, no. 1, pp. 133–145, Jan. 2016, doi:

10.1016/j.jksuci.2015.05.003.

[17] J. Shamsi, M. A. Khojaye, and M. A. Qasmi, “Data-Intensive Cloud

Computing: Requirements, Expectations, Challenges, and Solutions,”

Journal of Grid Computing, vol. 11, no. 2, pp. 281–310, Apr. 2013,

doi: 10.1007/s10723-013-9255-6.

[18] J. Baker et al., “Megastore: Providing Scalable, Highly Available

Storage for Interactive Services,” in Proceedings of the Conference on

Innovative Data system Research (CIDR), 2011.

[19] D. Akbari Bengar, A. Ebrahimnejad, H. Motameni, and M.

Golsorkhtabaramiri, “A page replacement algorithm based on a fuzzy

approach to improve cache memory performance,” Soft Computing,

vol. 24, no. 2, pp. 955–963, Dec. 2019, doi: 10.1007/s00500-019-

04624-w.

[20] J. Mertz and I. Nunes, “Automation of application‐level caching in a

seamless way,” Software: Practice and Experience, vol. 48, no. 6, pp.

1218–1237, Feb. 2018, doi: 10.1002/spe.2571.

[21] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “Intelligent Web proxy

caching approaches based on machine learning techniques,” Decision

Support Systems, vol. 53, no. 3, pp. 565–579, Jun. 2012, doi:

10.1016/j.dss.2012.04.011.

[22] R. Meloca and I. Nunes, “A comparative study of application-level

caching recommendations at the method level,” Empirical Software

Engineering, vol. 27, no. 4, Apr. 2022, doi: 10.1007/s10664-021-

10089-z.

[23] V. Holmqvist and J. Nilsfors, “Cachematic – Automatic Invalidation

in Application-Level Caching Systems,” in International Conference

on Performance Engineering, 2019, pp. 167–178.

[24] A. Blankstein, S. Sen, M. J. Freedman, A. Blankstein, S. Sen, and M.

J. Freedman, “Hyperbolic Caching : Flexible Caching for Web

Applications Hyperbolic Caching : Flexible Caching for Web

Applications,” in Proceedings of the 2017 USENIX Annual Technical

Conference, 2017.

[25] J. Mertz and I. Nunes, “Understanding Application-Level Caching in

Web Applications,” ACM Computing Surveys, vol. 50, no. 6, pp. 1–

34, Nov. 2017, doi: 10.1145/3145813.

[26] J. Mertz, I. Nunes, L. Della Toffola, M. Selakovic, and M. Pradel,

“Satisfying Increasing Performance Requirements With Caching at the

Application Level,” IEEE Software, vol. 38, no. 3, pp. 87–95, May

2021, doi: 10.1109/ms.2020.3033508.

[27] T. Ma, Y. Hao, W. Shen, Y. Tian, and M. Al-Rodhaan, “An Improved

Web Cache Replacement Algorithm Based on Weighting and Cost,”

IEEE Access, vol. 6, pp. 27010–27017, 2018, doi:

10.1109/access.2018.2829142.

[28] T. Ma, J. Qu, W. Shen, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan,

“Weighted Greedy Dual Size Frequency Based Caching Replacement

Algorithm,” IEEE Access, vol. 6, pp. 7214–7223, 2018, doi:

10.1109/access.2018.2790381.

[29] J. Zhang, “Replacement Strategy of Web Cache Based on Data

Mining,” 2015 10th International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC), Nov. 2015, doi:

10.1109/3pgcic.2015.75.

[30] A. Blankstein, S. Sen, M. J. Freedman, A. Blankstein, S. Sen, and M.

J. Freedman, “Hyperbolic Caching: Flexible Caching for Web

Applications,” in Proceedings of the 2017 USENIX Annual Technical

Conference, USENIX Annual Technical Conference, 2017. doi:

10.5555/3154690.3154738.

[31] J. Mertz and I. Nunes, “A Qualitative Study of Application-Level

Caching,” IEEE Transactions on Software Engineering, vol. 43, no. 9,

pp. 798–816, Sep. 2017, doi: 10.1109/tse.2016.2633992.

[32] M. I. Zulfa, R. Hartanto, A. E. Permanasari, and W. Ali, “LRU-

GENACO: A Hybrid Cached Data Optimization Based on the Least

Used Method Improved Using Ant Colony and Genetic Algorithms,”

Electronics, vol. 11, no. 19, p. 2978, Sep. 2022, doi:

10.3390/electronics11192978.

[33] J. Thomas, “Are ASEAN’s internet speeds world class?,” The Asean

Post.

[34] A. Saverimoutou, B. Mathieu, and S. Vaton, “Influence of Internet

Protocols and CDN on Web Browsing,” 2019 10th IFIP International

Conference on New Technologies, Mobility and Security (NTMS),

Jun. 2019, doi: 10.1109/ntms.2019.8763827.

[35] D. Ayuba, A. Ismail, and M. I. Hamzah, “Evaluation of Page Response

Time between Partial and Full Rendering in a Web-based Catalog

System,” Procedia Technology, vol. 11, pp. 807–814, 2013, doi:

10.1016/j.protcy.2013.12.262.

[36] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision

and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.

637–646, Oct. 2016, doi: 10.1109/jiot.2016.2579198.

[37] S. Motaman, S. Ghosh, and N. Rathi, “Cache Bypassing and

Checkpointing to Circumvent Data Security Attacks on STTRAM,”

IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2,

pp. 262–270, Apr. 2019, doi: 10.1109/tetc.2017.2653813.

[38] M. I. Zulfa, A. Fadli, A. E. Permanasari, and W. A. Ahmed,

“Performance comparison of cache replacement algorithms onvarious

internet traffic,” JURNAL INFOTEL, vol. 15, no. 1, pp. 1–7, Feb.

2023, doi: 10.20895/infotel.v15i1.872.

[39] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “A Survey of Web

Caching and Prefetching,” Int. J. Adv. Soft Comput. Appl., vol. 3, no.

1, pp. 1–27, 2011.

[40] X. Li, X. Wang, Z. Sheng, H. Zhou, and V. C. M. Leung, “Resource

allocation for cache-enabled cloud-based small cell networks,”

Computer Communications, vol. 127, pp. 20–29, Sep. 2018, doi:

10.1016/j.comcom.2018.05.007.

[41] T. Chen, “Obtaining the optimal cache document replacement policy

for the caching system of an EC website,” European Journal of

Operational Research, vol. 181, no. 2, pp. 828–841, Sep. 2007, doi:

10.1016/j.ejor.2006.05.034.

[42] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache

replacement strategies,” ACM Computing Surveys, vol. 35, no. 4, pp.

374–398, Dec. 2003, doi: 10.1145/954339.954341.

37

