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Abstract—This study investigates the potential of using Message Passing Interface (MPI) parallelization to enhance the speed of the 

image stitching process. The image stitching process involves combining multiple images to create a seamless panoramic view. This 

research explores the potential benefits of segmenting photos into distributed tasks among several identical processor nodes to expedite 

the stitching process. However, it is crucial to consider that increasing the number of nodes may introduce a trade-off between the speed 

and quality of the stitching process. The initial experiments were conducted without MPI, resulting in a stitching time of 1506.63 

seconds. Subsequently, the researchers employed MPI parallelization on two computer nodes, which reduced the stitching time to 624 

seconds. Further improvement was observed when four computer nodes were used, resulting in a stitching time of 346.8 seconds. These 

findings highlight the potential benefits of MPI parallelization for image stitching tasks. The reduced stitching time achieved through 

parallelization demonstrates the ability to accelerate the overall stitching process. However, it is essential to carefully consider the trade-

off between speed and quality when determining the optimal number of nodes to employ. By effectively distributing the workload across 

multiple nodes, researchers and practitioners can take advantage of the parallel processing capabilities offered by MPI to expedite 

image stitching tasks. Future studies could explore additional optimization techniques and evaluate the impact on speed and quality to 

achieve an optimal balance in real-world applications. 
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I. INTRODUCTION

Image stitching is a process in which multiple images are 

seamlessly combined to create a single, larger image. This 

technique has become increasingly popular in recent years, 

particularly in photography, where it allows for creating 

panoramic shots and other wide-angle views. Image stitching 

combines several images in the same scene into a single, high-
resolution panoramic image. Image stitching requires the 

closest resemblance or match between overlapping images 

and identical exposures to produce a seamless image [1]. 

Stitching algorithms have recently been applied in many 

fields, particularly photography, creating wide field-of-view 

(FOV) videos for surveillance and assisting automobiles [2]. 

Image stitching can be very helpful in many aspects. In the 

microscopic image area, Boyuan et al. [3] create large 

panoramas of tiny structure images to get the characteristics 

information of a material, and Kaiyue et al. [4] produce 

microscopic images of ceramic structures to get scientific data. 

In health areas, image stitching can combine pictures of 

deformity surgery to get exclusive photos of a person’s spinal 

image [5] or hyperspectral imaging [6]. In industrial areas, 

image stitching can assist inspection processes [7], [8]. More 

promising, in aerial monitories and mapping systems, Image 

stitching is also applicable. In [9] and [10], image stitching 

has been implemented to create a large-scale image of a 

farmland area. 

There are many types of approaches to image stitching. 

One of the famous approaches is feature-based image 
stitching. The feature-based method establishes 

correspondences between points, lines, edges, corners, or 

other geometric entities [1]. Image stitching can be a very 

lightweight task or vice versa, depending on the case. The 

process can be very long for large-scale image stitching 

because of the surplus of the data processed. There are many 

approaches to improve the speed of the stitching process 
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based on the algorithm. One of the faster stitching approaches 

is using a GPS sensor [11]. GPS helps predict the feature point 

location to shorten the matching process and improve the 

results' accuracy. An iterative optimization approach is used 

to construct the transformation matrix between keyframes. 

According to experiments, the suggested technique 

outperforms the RANSAC algorithm [12] under the same 

feature regarding matching outcomes and computing time 

where 3–4 frames per second are the typical frame rate. 

Problems facing low speed and low accuracy are often 
experienced at the feature extraction stage of aerial images. 

Another proposed method is to process aerial image mosaics 

to obtain fast and accurate image stitching results [13]. This 

study uses an improved method based on ORB features due 

to its calculation speed. The work process is carried out in four 

stages:  

1. Comparing the performance and speed of ORB to the 

other algorithms. 

2. Setting up thresholding based on descriptor similarity 

to produce fast and robust feature matching.  

3. Using a progressive LMedS & LS algorithm to 
eliminate spurious matches.  

4. Using a multi-band fusion algorithm to fuse the 

matched images and realize a panoramic mosaic. 

5. The results show that the method used can increase the 

efficiency of the captured images while ensuring the 

stitching effect and reducing cumulative errors. 

Another research combined two methods for better image 

stitching performance [14]. Those methods are the FAST-

Tomasi feature, an efficient method for detecting corners in 

an image by computing the smallest eigenvalue of the 

gradient covariance matrix at each pixel, and Delaunay 
triangulation, a computational geometry technique that is used 

to triangulate a set of points in a 2D plane or 3D space. Utilize 

the updated shape-preserving half-projective (SPHP) method 

for registration after using the FAST-Tomasi algorithm for 

feature recognition to get feature points rapidly and accurately. 

Next, use Hamming distance for rough matching before 

swiftly removing duplicate and incorrectly matched points 

with Delaunay triangulation. Final experimental findings 

demonstrate the stability and speed of the feature points 

retrieved using the method in this work. Matching accuracy 

and matching efficiency have significantly increased because 

of the Delaunay triangulation feature point elimination 
technique. 

Another faster and more efficient approach has been 

implemented for large-scale aerial image stitching [15]. This 

research improves the stitching performance by optimizing 

the size of overlapping areas of each image, so the images that 

will stitch are manageable. The optimization is done by 

utilizing an adaptive selection of the image set. The 

overlapping areas estimation also improves the feature 

detection and matching process. It determines whether it is 

necessary or not to do feature detection and matching. This 

research tested and compared the proposed method to other 
stitching software. The processing time for the suggested 

approach grows linearly, but the processing time for different 

methods, particularly for Pix4d, Hugin, and Photoshop, 

climbs considerably. To ensure a fair comparison, the pre-

processing time of the suggested procedure is also included. 

The total processing time of the suggested technique is 67.1, 

106.5, and 135.7 (seconds), respectively, for stitching 100, 

150, and 200 photos with a resolution of 5472 x 3648. 

Many methods are approached to handle the rising demand 

for high-performance computation, and one of those is by 

implementing parallel processing. The incredible 

improvement in single-processor performance resulted from 

integrated circuits using transistors as electronic switches in 

ever-higher densities. Transistors' speeds can be raised as 

their sizes shrink, which also speeds up the integrated circuit. 

Nevertheless, as transistors in the embedded chip/CPU speed 
grow, so does the energy they use. Most of this power is lost 

as heat, and an integrated circuit loses reliability if it becomes 

too hot [16]. Due to the mentioned problems, parallel 

processing is the solution. The industry has combined several 

simple, full processors on a single chip rather than creating 

ever-faster, more sophisticated, monolithic CPUs [17]. 

One of the numerous approaches to using parallel 

processing is implementing a message-passing interface (MPI) 

[18]. MPI is used to create message-based parallel 

programming. It is extensively utilized in applications for 

high-performance computing and allows communication 
between computers to complete a task over a network. 

Implementing MPI provides a unique approach to building 

software with a specific function. A wide range of hardware 

and software platforms support it.  MPI concepts utilize 

communicators, data types, point-to-point communication 

and collective communication [19]. 

Many tasks, including big data processing, have been 

implemented using MPI-based parallel processing [20]. In 

contrast to the ones now in use, a unique approach to 

extensive data processing and management was put forth in 

this work. The suggested strategy leverages memory space for 
reading and handling vast data and memory-mapped extended 

memory storage. From a methodological perspective, this 

study is new in that it uses memory mapping to massive 

partition data and then uses a parallel message-passing 

interface to broadcast all segments to various processors. 

From an application perspective, the study provides a high-

performance method based on a homogeneous network that 

encrypts and decrypts massive data using the Advanced 

Encryption Standard (AES) algorithm while operating in 

parallel. 

Jiang et al. have used MPI in the robotics industry to 

improve the issue of the communication bottleneck in ROS2 
[21]. They proposed an innovative method, the adaptive two-

layer serialization algorithm, which can effectively 

communicate various messages. According to experimental 

findings, our algorithm can significantly outperform 

conventional techniques in ROS2 by up to 93% when using 

our framework. Another MPI implementation is optimizing 

the clustering process using K-Means [22]. In terms of 

overhead costs and execution, the performance of the K-

means method for clustering the data is studied in this work 

between the sequential run and the parallel run in the design 

of message-passing interfaces. 
Fajrianti et al. [23] discuss several scenarios of applying 

CUDA and MPI to train the 14.04 GB corn leaf disease 

dataset—the use of CUDA and MPI in the image pre-

processing process in their research. The results of the pre-

processing image accuracy are 83.37%, while the precision 

value is 86.18%. In pre-processing using MPI, the load 
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distribution process occurs on each enslaved person, from 

loading the image to cutting the image to get the features 

carried out in parallel. The resulting features are combined 

with the master for linear regression. In the use of CPU and 

Hybrid without adding MPI, there is a difference of 2 minutes. 

Moreover, in the usage between CPU MPI and GPU MPI, 

there is a difference of 1 minute. The result demonstrates that 

implementing accelerated and parallel communications can 

streamline the processing of data sets and save computational 

costs. In this case, using MPI and GPU positively influences 
the proposed system. 

In this research, we proposed implementing MPI to improve 

the process of aerial image stitching. We used the MPI tool, 

LAM/MPI, to create the environment because of its high 

performance, free availability, and open source [24]. It was 

researched, developed, and maintained at the Open Systems 

Lab at Indiana University. Due to its stability and availability, 

we also used a DJI drone to take aerial pictures. The rest of 

this paper is organized as follows, the designs and methods of 

the system and the method of approach are described in 

Section II. Section III includes the experiment's setup, results, 
and discussion. Finally, we conclude our study in Section IV. 

II. MATERIALS AND METHOD 

This section shows the system design, topologies, data and 

server preparation. In this research, we implement parallel 

processing using MPI for aerial large-scale image stitching. 

The area of our university, Politeknik Elektronika Negeri 

Surabaya (PENS), is chosen for the stitching area. Raw 

images are obtained using drones that are flown over the 
university area. 

A. Data Collection 

Using a DJI drone, the raw images were collected 

autonomously. A DJI drone equipped for autonomous 

mapping typically includes a high-resolution camera and 

software that enables the drone to fly a pre-planned flight path 

while taking images. The specifications of the camera used, 

which is Hasselblad, can be seen in Table I. 

TABLE I 

CAMERA SPECIFICATIONS 

No Items Specifications 

1 Camera Hasselblad 11d-20c 
2 Sensor size 20MP 1” 
3 Storage FOV 77° (28 mm) f/2.2 

 

In order to navigate and maintain its position to follow the 

pre-planned flight path while in flight, the drone would also 

usually have a GPS receiver and sensors such as an Inertial 

Measurement Unit (IMU) and a barometer. Figure 1 shows 

the pre-planned flight path while taking images. The drone 

was flying at the height of 110 meters, with the size of area 

332 x 205 meters2. The approximated total time taken from 

the data collection process was about 25 minutes. 

During the data acquisition process, overlapping is 
required to help overcome problems such as shadows, 

reflections, and noise that can occur in drone images taken 

with a flat perspective. With sufficient overlapping, image 

processing software can combine information from each 

image to produce sharper and more detailed images, as well 

as improve the quality of data measurement and analysis. In 

this research, the applied overlapping is 75%-80%. 
 

 
Fig. 1  Image capture route planning 

B. MPI (Message Passing Interface) 

The Message Passing Interface (MPI) is a key component 

in managing tasks on multiprocessor computers. A common 

standard communication mechanism called MPI makes it 

easier for numerous processes operating on various 

distributed system threads to send messages to one another. 

Utilizing multiple processing capacities enables programmers 
to build parallel applications that can quickly handle massive 

databases and carry out intricate calculations. 

One of the freely available standard implementations of 

MPI is LAM. Since its inception in 1989, the LAM project 

has developed into a mature code base that is feature-rich and 

effective in its implementation, providing MPI users and 

developers with high performance and convenience [25]. The 

utilization of LAM/MPI has given the system the ability to 

perform multiple tasks. However, the tasks are limited to one 

computer. In order to make the LAM/MPI run on a cluster 

network with multiple computers as nodes, the Network File 
System (NFS) is used [24]. NFS allows a computer to share 

its folder with another in a network cluster. After the 

LAM/MPI is installed and configured on all the computers 

that are members of NFS, the LAM/MPI will recognize the 

computers as nodes. The LAM/MPI and the NFS setup is 

shown in Figure 2. 

C. Image Stitching 

A preprocessing step was performed to prepare the dataset 

for image stitching to eliminate unwanted noise or artifacts. 
The method used to handle this is contrast enhancement or 

histogram equalization, a technique used to improve an 

image's contrast by adjusting the pixels' intensity levels. It 

works by redistributing the pixel values in the image so that 

they cover a more comprehensive range of intensities. Some 

histogram equalization implementation has proven their 

ability to improve image quality [26]–[28]. The equation of 

histogram equalization is shown as follows. 

  
(1) 

  
(2) 
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Fig. 2  Local design of MPI architecture for 2D stitching 

 

with  is the x-axis index of the selected pixel, and  is the 

y-axis index of the selected pixel.  is the equalized value of 

, and  is the equalized value of .  and  is the 

index of the pixel with minimum value from the entire image. 

After the image is enhanced with histogram equalization, 

the next step is to get the feature points of each image. A 

prevalent method, SIFT, is used for this task. SIFT is a feature 

extraction technique used in computer vision for detecting and 

describing local features in images. David Lowe developed it 
in 1999 [29]. It has become a popular feature-based image-

matching and recognition method [1], [5], [9]. Four stages are 

mainly involved in SIFT feature detection: scale-space 

extreme value detection, key point placement, key point 

direction determination, and feature descriptor construction 

[5]. 

1) Scale-space extreme value detection: A method for 

locating essential characteristics like borders and angles when 

a picture is blurred to varying degrees. The method finds 

regions of the picture where the image changes noticeably by 

blurring it with a Gaussian filter at various blur levels and 

comparing pixel values. 

2) Key point placement: Finding important areas in an 

image that are stable under different levels of blurring. These 

areas are selected based on their contrast and presence of local 

extrema in the Difference-of-Gaussian function. Key points 

are used to create descriptors that encode the characteristics 

of the feature at that location. These descriptors can be used 

for matching and recognition. 

3) Key point direction determination: Giving each 

important area of a picture a direction. A histogram of 

gradient orientations is constructed to achieve this. Gradient 

orientation is assigned based on the apex in the histogram, and 
the gradient magnitudes and orientations around the key point 

are examined. If there are several summits, various angles 

might be given. A rotation-invariant description is made using 

alignment. 

4) Feature descriptor construction: A local picture 

patch's gradient orientations and magnitudes are captured in a 

128-dimensional vector by making this vector around a focal 

point. A histogram of gradient directions is created for each 

subregion from the picture patch. The feature description, 

invariant to translation, rotation, and scaling, is made by 

joining the resulting histograms. 

As shown in Figure 3, a key point descriptor is produced 

by first calculating gradient amplitude and orientation at each 

image sample point near the key point. These are given weight 

by a Gaussian window, depicted by circular overlaid. These 

examples are combined into orientation histograms that 

summarize the contents over 4x4 subregions. Each arrow's 

length is determined by adding gradient magnitudes in the 

area close to that direction. 

 

 
Fig. 3  SIFT descriptor generation [30] 

 

The next step is featuring matching. Using the nearest 

neighbor approach, a popular feature matching method, each 
image feature will be matched with the other image. The result 

of this step is pairs of matched features. From those pairs of 

matched features, a homograph matrix is acquired. A 

homograph matrix is a 3x3 transformation matrix that maps 

points from one plane to another. The homograph matrix can 

transform one image to match the other after it has been 

estimated. It is frequently applied when stitching together 

multiple images to create a panoramic view [1], [2], [6]. 

D. Stitching Scenarios 

Three topologies configuration has been defined to 

discover the scale-up factor of implementing the MPI in 

stitching processes. The three topologies are shown in Fig. 4, 

Fig. 5, and Fig. 6, respectively. The first stitching test is 
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processed using a single computer without using MPI shown 

in Figure 4. This test is carried out to discover the required 

processing time for the stitching process if MPI is not used. 

All the images are directly stitched with only one routine in 

one processor. 

 

 
Fig. 4  Stitching Topology on single Processor (without MPI) 

 

Figure 5 shows the topology of the stitching process using 

MPI with two processors parallelly called nodes. The node 

master is located on the first computer (first node). The node 

master is intended to store data that must be worked on during 

the image stitching. The obtained images will be divided 

according to the number of existing nodes with several 

additional overlapping images to keep the features point. 

After the image stitching process at each node has been 

completed, the stitched image results will be combined again 

with the final image stitching process to get the final stitching 

result. 

Another image stitching test scenario is carried out to get 

the scale-up factor of MPI implementation in the image 

stitching task. It is shown in Figure 6, where there are four 

computer nodes. The node master is located at the first node 

working to divide work on other nodes. After that, the stitched 

image results from the four nodes will be combined at the 

node master to get the final stitched image result. The 

stitching process that was carried out would be tested for their 
speed performance, and each compared to the results obtained. 

To implement MPI in the image stitching processes, a python 

package, mpi4py [31]. The mpi4py package has developed to 

become the most popular Python binding for the MPI (MPI). 

III. RESULTS AND DISCUSSION 

This section will show and discuss the results of the 

experiments. To implement parallel processing, we need more 
than 1 CPU processor. In this research, we created four virtual 

machine server computers hosted in the cloud from the 

university. Each used computer has the same specifications 

that are shown in Table II. 

 

 
Fig. 5  Stitching topology using 2 processors. 

 

 
Fig. 6  Stitching topology using 4 processors. 
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TABLE II 

COMPUTER SPECIFICATIONS EACH NODE 

No Items Specifications 

1 Processor Intel(R) Xeon(R) CPU E5-
2650 v2 @2.30 GHz 

2 RAM 16 GB 
3 Storage 20 GB 

 

We obtained 86 images from the data collection process 

using DJI Drone, which we explained in section IIA, which 

took about 25 minutes. The total time taken from the data 

collection process was about 25 minutes. The data was then 

processed for the image stitching tests using several scenarios. 

The designed scenarios for image stitching are: 

1. Without MPI, as shown in Figures 4. 

2. Using MPI with two computer nodes, as shown in 

Figures 5. 
3. Using MPI with four computer nodes, as shown in 

Figures 6. 

Multiple image stitching scenarios were designed to get the 

time reduction of the image stitching processes and the scale-

up factor for using more than two computer servers. The 

processing time in this research may also be 

reduced exponentially in proportion to the number of nodes 

employed. To verify the hypothesis, we propose several 

configurations of the number of nodes, which are 1, 2, and 4 

nodes.  Timestamps were recorded during the image stitching 

process to get the time of the image stitching process. The test 
parameter is only focused on observing the time because this 

research was aimed at reducing processing time while do 

image stitching using MPI. The result from the image 

stitching processes can be seen in Figures 7, 8, and 9, 

respectively. 
 

 
Fig. 7  Proceeded time needed for image stitching without MPI 

 
There were only two phases when not using MPI, shown in 

Figure 7: the image loading phase and the image stitching 

phase. The time required to load 86 images is 35.7 seconds, 

while the time required to carry out the stitching process is 

1506.63 seconds or about 25.1 minutes. 

When using MPI, there were four phases: image loading 

phase, partial stitching phase, idle phase, and final stitching 

phase. The images are split into the number of used computer 

nodes with overlapping of five images to keep the overlapping 

features for the stitching process in the final stage. The 

number of overlapped images is eight images in these tests. 

The result from the image stitching process with MPI using 
two computer nodes shows that it needed 20 seconds to load 

images, with 47 images in each node. The partial image 

stitching process took 434.4 seconds in the first node and 561 

seconds in the others. 

 

 
Fig. 8  Proceeded time needed for image stitching using MPI 2 node 

 

When one node finishes the job faster than the others, it 

will be in the idle phase and wait for the next job. Then, for 

the final image stitching process, the node master (node 1) 

collects the stitched image from the other node and processes 

the final stitching phase. It took 624 seconds. A vast time 

reduction in the image stitching process has been obtained 

when image stitching runs with MPI, with a reduction of 

881.63 seconds. 
 

 
Fig. 9  Proceeded time needed for image stitching using MPI 4 nodes 
 

Considering the time reduction from non-MPI image 

stitching to 2-node MPI image stitching, we expected to get 

more reduction in time. Figure 9 shows the test result from the 

4-node MPI image stitching scenario. It only took about 15.35 

seconds for each node at the same time. The partial stitching 

phase took variational time, 252.6 seconds for node 1, 242.34 
seconds for node 2, 136.87 seconds for node 3, and 246.87 for 

node 4. The required final stitching process is 94.2 seconds, 

which takes longer compared to MPI 2 nodes. Those results 

were caused by increased stitched images from the partial 

stitching phase that need to be stitched in the final stitching 

phase to produce the final result. 
Figure 10 shows the relation between the number of nodes 

and the image stitching time. The image stitching process has 

significant improvement in time from the first scenario to the 

second scenario. However, in contrast to what we had 
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expected, we found that the time decrements are not linear 

after testing the image-stitching processes with three 

scenarios. These unexpected results could be due to several 

factors. When the number of nodes increases, overlapping 

images also increase more than the number of nodes. These 

overlapping images must have burdened the partial image 

stitching processes. These findings have important 

implications for developing the implementation of MPI for 

image stitching tasks. 

Furthermore, the number of MPI nodes also affects the 
result of the stitched image. Figure 11 shows the stitched 

image result from each scenario. Of course, there are 

drawbacks in every stitching process produced both using 

Non-MPI and MPI. Even though the non-MPI stitching 

process takes longer, the final results obtained are clearer 

when compared to stitching using MPI. The more MPI nodes 

used, the less clear and less accurate as shown in Figure 11. 

 
Fig. 10  Proceeded time needed for image stitching using MPI 4 nodes  

 
(a) Non-MPI 

 
(b) MPI 2 nodes 

 
(c) MPI 4 nodes 

Fig. 11  Final result 
 

IV. CONCLUSION 

In this study, we have investigated the effectiveness of MPI 

used in the stitching process. MPI can boost up the time 

needed for stitching processes by dividing the task into 

several nodes. We conducted this analysis by running a 

stitching process on MPI with two and four nodes and 

compared the results with non-MPI stitching process. The 
results show that the total time needed for stitching without 

MPI was 1506.63 seconds. For MPI with two computer nodes, 

it took 624 seconds, and it took 346.8 seconds for MPI with 

four computer nodes. In conclusion, the higher number of 

nodes that were used, the faster the stitching process can be. 

However, there is a disadvantage as more MPI nodes are used. 

Stitching results are becoming less accurate compared to 

stitching non-MPI. This is due to the lack of detected features 

due to the reduced capture area because the image is divided 

into several nodes. 

Our results suggest that further research is needed to 
determine the optimal value of the number of nodes and the 

number of overlapping images that may have contributed to 

the unexpected results. In addition, MPI can be applied to 3D 

stitching, which takes longer time to process than 2D stitching 

[32]. 
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