
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Comparison of Adam Optimization and RMSprop in Minangkabau-

Indonesian Bidirectional Translation with Neural Machine Translation 

Fadhli Almu’iini Ahda a,b,*, Aji Prasetya Wibawa a, Didik Dwi Prasetya a , Danang Arbian Sulistyo a,b

a Electrical Engineering and Informatics, Universitas Negeri Malang, Jl. Semarang No.5, Malang, 65145, Indonesia  
b Institut Teknologi dan Bisnis Asia Malang, Rembuksari No.1A, Malang, Indonesia  

Corresponding author: *adhi32286@gmail.com 

Abstract— Language is a tool humans use to establish communication. Still, the language used is one language and between regions or 

nations with their languages. Indonesia is a country that has a diversity of second languages and is the fourth most populous country in 

the world. It is recorded that Indonesia has nearly 800 regional languages, but research activities in natural language processing are 

still lacking. Minangkabau is an endangered language spoken by the Minangkabau people in Indonesia's West Sumatra province. 

According to UNESCO, the Minangkabau language is listed as a language that is "definitely endangered," with only around 5 million 

speakers worldwide. This study uses neural machine translation (NMT) to create a formula based on this information. Neural machine 

translation, in contrast to conventional statistical machine translation, intends to build a single neural network that can be built up to 

achieve the best performance. Because it can simultaneously hold memory for a long time, comprehend complicated relationships in 

data, and provide information that is very important in determining the outcome of translation, LSTM is one of the most powerful 

machine-learning techniques for translating languages. The BLUE score is utilized in the NMT evaluation. The test results use 520 

Minangkabau sentences, conducting tests based on the number of epochs ranging from 100-1000, resulting in optimization using Adam 

being better than optimization RMSprop. This is evidenced by the results of the best BLUE-1 score of 0.997816 using 1000 epochs. 
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I. INTRODUCTION

Indonesia is a country that has a diversity of second 

languages and is the fourth most populous country in the 

world. It is recorded that Indonesia has almost 800 regional 

languages, but research activities in natural language 

processing still need to be improved [1]. It is time to build a 

local Indonesian natural language processing dataset, first 
focusing on developing a framework and creating, collecting, 

and classifying datasets reflecting this situation [2]. The top 

10 regional languages in Indonesia can be seen in Figure 1. 

Minangkabau is an endangered language spoken by the 

Minangkabau people in the West Sumatra province of 

Indonesia. According to UNESCO, Minangkabau is listed as 

a "definitely endangered" language, with only around 5 

million speakers worldwide [3]. 

Neural machine translation is the newest language 

translation method widely applied worldwide [4]. This 

technique allows machines to learn from source and target 

language data to produce precise and accurate translations. In 

language translation, optimization is one of the critical factors 

affecting the performance of the neural engine. Several 

optimization techniques are used in neural machine training, 

including RMSProp and Adam optimization [5]. 

In translating Minangkabau into Indonesian, few studies 

have compared the effectiveness of RMSProp and Adam 

optimization [6]. Therefore, this study aims to compare the 

performance of RMSProp and Adam optimization in neural 

machine translation from Minangkabau to Indonesian. In this 

study, we will use existing translation data to train a neural 

machine translation model and then compare the model's 
performance using RMSProp and Adam optimization [7]. We 

will analyze the results of both optimization techniques and 

evaluate translation performance based on standard 

evaluation metrics [8]. This research is expected to 

understand better the use of RMSProp and Adam optimization 

in translating Minangkabau into Indonesian. The results of 

this study can help develop more effective and efficient neural 

machine translation models in the future [9]. 
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Fig. 1  The top 10 regional languages in Indonesia 

 

Various other languages, including Malay, Javanese, and 

Arabic, have influenced the Minangkabau language. It is a 

unique language that uses a matrilineal system of inheritance 

and is often called the "world's largest matrilineal society" 

[10]. Several factors have contributed to the endangerment of 

the Minangkabau language. One of the main reasons is the 

increasing use of Indonesian as the national language of 
Indonesia, which has resulted in a decline in the use of 

regional languages like Minangkabau. Additionally, there has 

been a lack of support for the preservation and promotion of 

Minangkabau, including a lack of language education 

resources [3], [11]. 

II. MATERIAL AND METHODS 

The first stage in this research is data collection. After the 
data is collected, the next step is modeling, data processing, 

separation, and evaluation. 

A. Data Collection 

The data used is Minangkabau and Indonesian language 

corpus data in .txt format, accessed on data. The data used is 

520 Minangkabau and Indonesian language sentences in 

rhymes. The last remaining step for the Minang-Indonesian 

dataset is to reverse the dataset, which can be seen in Table I.  

TABLE I 

AN EXAMPLE OF THE DATASET USED INDONESIA-MINANG 

Indonesian Minangkabau 

pagi-pagi menuai padi sajak pagi manuai padi 
selesai sudah pukul satu sudahnyo lah pukua satu 
yang masak saja yang dituai nan masak sajo nan dituai 
saya menangis dalam hati denai manangih dalam hati 

siapalah orang yang akan 
tahu 

sialah urang nan katau 

jika tidak orang yang merasai jikok ndak urang nan marasai 

B. Neural Machine Translation 

Since the early 2000s, neural machine translation (NMT) 
has grown significantly and matured. The most popular 

machine translation method still needs to perform better on 

language pairs with low resources compared to their high-

resource counterparts because no massive parallel corpora are 

available [11], [12]. Despite the neural machine translation 

(NMT) success in performance testing, the absence of 

significant parallel corpora is a practical challenge for many 

language combinations [14]. Many solutions have been 

proposed to address this problem, such as triangulation and 

semi-supervised learning approaches, but they still need a 

potent cross-lingual signal [15], [16].  

C. Preprocessing 

This section removes all unnecessary characters in 

compiling the dataset, from punctuation to symbols [17]. 

Table 2 shows that the process starts by loading the data-

separated dataset. After the refinement process, proceed with 
compiling and defining the regex of character sequences 

based on the dataset [18]. The process is continued by 

preparing the translation table to remove all readable 

punctuation marks in the dataset. The process includes 

normalizing Unicode characters, creating tokens for spaces, 

converting the dataset into lowercase, removing unnecessary 

characters and numbers, and ending with saving a list of clean 

sentences [19]. Then, the following process is to display the 

dataset in separate forms in Minang and Indonesian, and the 

last is to clean up the sentence again and save the dataset [20]. 

TABLE II 

PSEUDOCODE FOR PREPROCESSING 

D. LSTM (Long Short-Term Memory) 

In this study, cell A was given to typical LSTM cells. 

Because of its superior performance, LSTM is a widely 
utilized RNN in the learning domain. Memory modules are 

another name for LSTM hidden layer modules [21], [22]. It 

has three gates that handle reading, storing, and writing 

accordingly. These are input, forgetting, and output gates [23], 

[24]. The three gates are valve-like devices that open and 

close to convey data to the neurons. They establish how much 

information is used to calculate a neuron's currents and how 

much is transferred to the cell after it [24]. Figure 2 represents 

the LSTM's internal architecture.  

1) The LSTM model's function, as indicated in Figure 2, 

is a logistic and unique function. It is an activation function to 

enable the LSTM model's nonlinearity. The input and 
candidate gates create a new cell, Ct, which is then sent to the 

next stage as an updated cell. The input candidate gate utilizes 

the hyperbolic tangent of the function (mt) as the activation 

function, while the input gate uses the sigmoid function (it) as 

the activation function. Another unique feature of the LSTM 

is the tan function, indicated by "tanh" in Figure 2.  

Pseudocode for the preprocessing process using a Python script 
for cleaning datasets. 

load doc into memory 
, and split a loaded document into sentences. 

clean a list of line 
 prepare regex for char filtering. 
 prepare a translation table for removing punctuation. 
                          make Unicode characters more readable. 
                          tokenize using blank spaces. 
                          lowercase the letters. 
                          Take the punctuation out of every token. 
                          Take the non-printable characters out of 

each token. 
                          Remove all tokens that contain numerals. 
save a list of clean sentence to file 
load dataset  
split into Minang-Indonesia 
clean sentences 
save clean pairs to file 
spot check 
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2) The forgetting vector: The value ranges from 0 to 1, 

produced by the forgetting gate. The ft function operates as 

forgetting multiplied by the previous cell value [25]. 

 

 
Fig. 2  Basic mechanism work of LSTM [26] 

 

The following is the LSTM (Long Short-Term Memory) 

formula that is commonly used in artificial neural networks 

[27] 

 

1. The forget gate is defined as  

 f_t = (W_f. [h_t-1, x_t] + b_f)  (1) 

2. Input Gate:  

 i_t = (W_i. [h_t-1, x_t] + b_i)  (2) 

The formula for _t is tanh  

 (W_c. [h_t-1, x_t] + b_c)  (3) 

3. Change the cell as follows:  

 C_t = f_t * C_t-1 + i_t * _t  (4) 

4. The output gate is: 

o_t = (W_o. [h_t-1, x_t] + b_o) 

o_t * tanh (C_t) = h_t 
(5) 

In the modeling methodology in Figure 3, there are five 

steps involved in the optimization process.  
1) Preparing Data: The first input was the Minang-

Indonesia and Indonesia-Minang corpus datasets during this 

process. It was then preprocessing, where the dataset was 

cleaned of punctuation so that the normalization process could 

occur. 

2) Generating a List Containing Combination 

Parameter: The following process provides a list of parameter 

combinations to measure datasets: providing hidden layers, 

number of neurons, learning rate, and number of epochs. 

3) Transforming Data: In grouping datasets, how many 

will be used as training data, and how many will be utilized 

as testing data. 
4) Training Models: This process is the essence of the 

problem, how to choose the model to be used. The selected 

model is The LSTM model, which has two optimization 

models: Adam optimization and RMSprop. 

5) Selecting the Best Models: This process is the final 

process in research where the results and predictions are 

already visible as a BLUE Score so that the best model can be 

selected.

 

 
Fig. 3  The proposed methodology for Minangkabau into Indonesian bidirectional translation using LSTM 
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E. RMSprop Optimization 

The stochastic gradient descent algorithm RMSprop (Root 

Mean Square Propagation) modifies the learning rate for each 

weight based on the average magnitude of recent gradients for 

that weight[28] [29]. It uses an exponentially decaying 

average to calculate this magnitude, giving more weight to 

recent gradients than older ones. This helps prevent the 
learning rate from oscillating too much and enables faster 

convergence to the optimal solution. After calculating the 

gradient, the squared gradient is accumulated to apply 

RMSprop: [30] 

 r ← ρr + (1 − ρ)g Ⓢ g (6) 

where the rate of deterioration is. The following is how 

the parameter update is calculated and used: 

 

(7) 

 θ ← θ + ∆θ (8) 

F. Adam Optimization 

Adam (Adaptive Moment Estimation) optimization is an 

extension of RMSProp that includes a momentum term [31]. 

The momentum term helps the optimizer to continue moving 

in the same direction as previous gradients, which can help 

overcome areas of low gradient magnitude or saddle points. 

Additionally, Adam uses bias-correction terms to adjust the 

estimates of the first and second moments of the gradient, 

which can help with convergence when the gradients are 

sparse [32]. The Adam method needs the first and second 
instant variables m and u. Biased first- and second-moment 

estimates are updated at time step t following gradient 

computation, respectively: [30] 

 mt ← ρ1mt−1 + (1 − ρ1)gt (9) 

 ut ← ρ2ut−1 + (1 − ρ2)g Ⓢ g (10) 

The bias is then adjusted in the first and second moments 

after that. Updates to parameters are calculated and made 

using the updated moment estimates: 

 θt ← θt−1 + ∆θ (11) 

Adam has many benefits. It first needs to be slightly tuned 

for the learning rate. It is also an easy strategy to use and is 

not affected by the diagonal scaling of gradients [33]. It 

requires less memory and is highly computationally efficient. 

Additionally, Adam is suitable for non-stationary goals and 

issues with extremely noisy and sparse gradients [34]. 

G. K-Fold Cross Validation 

K-fold cross-validation is a machine learning method for 

assessing a model's performance on a given dataset. The 

dataset is split up into k subsets, or nearly equal-sized folds. 

The model is then tested on the final fold after being trained 

on k-1 folds. Each fold is the test set once during this process, 

which is repeated k times [35]. The k-fold results are averaged 

to obtain a final performance statistic. This method helps to 

reduce the variance of the estimated performance compared 

to a simple train-test split, as all data points are used for 

training and testing [36]. K-fold cross-validation is often used 
to tune hyperparameters of a model, such as the regularization 

parameter, by evaluating the performance of the validation set. 

It can also help detect overfitting by providing a more robust 

estimate of the model's generalization performance. 

III. RESULTS AND DISCUSSION 

By using a dataset that is still limited, namely 520 

sentences from Minang to Indonesian, and vice versa. Figure 
4 and Figure 5 are the results of optimization testing using 

LSTM.

 

 

 
Fig. 4  Minang - Indonesian translation test results 

 

In Figure 4 for the first Minang-Indonesian translation, 

there was an error in translation where it should have been the 

target sentence (I will run away from the village) with the 

meaning "I will leave this village," but in the predicted results, 

the sentence became (I will run away from the village) with 

the meaning "I will run around the village" so that it does not 

match the meaning of the translated sentence. The second 

experiment, starting from the target and prediction, follows 

the meaning of the desired translation sentence. 
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Fig. 5  Indonesian - Minang translation test results 

 

In Figure 5 for the reverse translation, Indonesian-Minang, 

two experimental examples are shown with the same sentence 

from the previous experiment. As seen in the picture above, 

experiments 1 and 2 of the target and prediction of the 
translated sentence all match the actual meaning of the 

sentence. So, from the test results of the two translations, there 

are differences in the results, where the results of the 

Indonesian-Minang translation test get better results than the 

Minang-Indonesian translation test. 

 

 
Fig. 6  Minang-Indonesia with Optimization Adam 

 

 
Fig. 7  Minang-Indonesia with Optimization RMSprop 

 

From the experimental results in Figures 6 and 7 for the 

Minang-Indonesian translation, it can be seen that Adam's 

optimization only requires 358 epochs to display the test 

results graph. In comparison, RMSprop's optimization 

requires 1122 epochs. Adam's optimization testing results 

display a more accurate graph than the RMSprop optimization. 

TABLE III 

MINANG-INDONESIAN OPTIMIZATION TEST RESULTS 

Fold  
Adam RMSProp 

BLUE -1 BLUE -1 

1 0.995575 1 

2 1 0.995614 

3 0.995614 1 

4 1 1 

5 1 1 

6 1 0.995708 

7 1 1 

8 0.995614 0.995434 

9 1 0.995745 

10 1 0.995495 

Average 0.9986803* 0.9977996 

 
In this test, the k-fold cross-validation model was carried 

out by experimenting with split data with a ratio of 90:10 [37]. 

This means using 90% of the dataset for training and 10% of 

the dataset for testing. They performed ten times with split 

data from a total of 520 datasets. The k-fold test for Minang-

Indonesian translation was performed ten times for Blue 

Score-1 using Adam Optimization and RMSprop. Obtaining 

test results using Adam is better than RMSprop optimization, 

with an average BLUE Score of 0.9983023 for Adam 

optimization and 0.9982868 for RMSprop optimization. The 

difference between the BLUE Score values between 
optimizations is 0.0008807. 

 
Fig. 8  Indonesia-Minang with Optimization Adam 
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Fig. 9  Indonesia-Minang with Optimization RMSprop 

 

From the results of the testing experiments in Figures 8 and 

9 for the Indonesian-Minang translation, the Epoch results are 

similar between Adam's optimization and RMSprop 689 and 

673 Epoch. However, Adam's optimization is still superior to 

RMSprop's for translation accuracy. 

TABLE IV 

INDONESIAN-MINANG OPTIMIZATION TEST RESULTS 

Fold 
Adam RMSProp 

BLUE -1 BLUE -1 

1 1 0.995763 

2 0.987333 1 

3 1 0.995726 

4 1 1 

5 1 1 

6 1 1 

7 1 0.991379 

8 0.99569 1 

9 1 1 

10 1 1 

Average 0.9983023* 0.9982868 

 

As for the fold test for Indonesian-Minang translation, the 

same process was carried out with ten tests for BLUE Score 

1, obtaining test results of 0.9983023 for Adam optimization 

and 0.9982868 for RMSprop optimization. So, the difference 

between optimizations is 0.0000155, assuming that Adam's 

optimization is still better than RMSprop optimization in this 

case study. 

 
Fig. 10  Adam Optimization Result Graph 

 

The graphical results using Adam optimization show that 

the training and testing lines look almost perfectly integrated, 
which means the results are close to 1. It can also be seen that 

testing and training iterations require 598 epochs with 128 

layers, which only takes 317 seconds. 

TABLE V 

ADAM OPTIMIZATION BLUE RESULTS 

Epoch BLUE-1 BLUE-2 BLUE-3 BLUE-4 
100 0.708150 0.599884 0.543484 0.423315 
200 0.990834 0.985237 0.981014 0.960261 
300 0.996942 0.995424 0.994433 0.979995 
400 0.996943 0.995363 0.994093 0.979148 
500 0.997380 0.996147 0.994803 0.980072 
600 0.996942 0.995424 0.994433 0.979995 
700 0.997380 0.995581 0.994223 0.979256 
800 0.997379 0.996209 0.995144 0.980920 
900 0.996943 0.995363 0.994093 0.979148 
1000 0.997816* 0.996710 0.995686 0.981704 

 

The table above describes the results of 10 experiments for 

Adam optimization using a comparison of the number of 

epochs ranging from 100-1000. This experiment finds the best 

optimization regarding the time used to make predictions. 

Because in optimization, what is seen is good accuracy and 

the length of time used in optimization [38]. Table V above 

shows Adam's optimization's best accuracy results in the last 
test with a BLUE-1 value of 0.997816 with several epochs of 

1000. From the graphical results in Figure 11 using RMSProp 

optimization, the training and testing lines show that there is 

still a distance between the blue and orange lines. At the same 

time, the looping time takes longer than Adam's optimization, 

namely 822 epochs with 431 seconds. 

 
Fig. 11  RMSprop Optimization Result Graph 

TABLE VI 

RMSPROP OPTIMIZATION BLUE RESULTS 

Epoch BLUE-1 BLUE-2 BLUE-3 BLUE-4 

100 0.278127 0.154305 0.126766 0.078917 

200 0.787241 0.715970 0.679447 0.585099 

300 0.987336 0.981788 0.978701 0.959029 

400 0.996507 0.994296 0.992730 0.977350 

500 0.997379 0.996209 0.994903 0.980381 

600 0.997380* 0.996147 0.994803 0.979732 

700 0.996943 0.995363 0.994093 0.979148 

800 0.997380* 0.996147 0.994803 0.980072 

900 0.996942 0.995424 0.994433 0.979995 

1000 0.997379 0.995926 0.994975 0.980780 

 

The test results using the RMSprop optimization are shown 

in Table VI above by using a test based on the number of 

epochs from 10 times of testing, the results for BLUE Score-

1, the best score occurred in experiments 6 and 8 with the 

same value, namely 0.997380. 
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TABLE VII 

ACCURACY RESULTS IN ADAM AND RMS PROB 

Accuracy Results 

Evaluation  Adam RMSProp 

BLUE-1 0.997816* 0.997380 

BLUE-2 0.996710 0.996209 
BLUE-3 0.995686 0.994975 
BLUE-4 0.981704 0.980780 

 

From the results of the BLUE score, the accuracy for 

optimization using Adam is still better than optimization 

using RMSprop. It is proven that the highest BLUE values are 

at BLUE Score 1, namely 0.997816 and 0.997380, 
respectively. 

IV. CONCLUSION 

Based on the study's results, it can be concluded that 

Adam's optimization is more effective than RMSProp in 

translating the neural machine from Minangkabau to 

Indonesian and vice versa. Although both optimization 

techniques give relatively good results, Adam's optimization 

performs better in achieving convergence and accelerating the 
training model. 

To further the progress of Natural Language Processing 

(NLP), developing an extensive bilingual corpus 

encompassing the Minangkabau and Indonesian languages 

presents a substantial opportunity. This highly significant 

resource is positioned to function as the fundamental 

knowledge for advancing comprehensive Minangkabau 

genealogy techniques. With the foresight of the potential of 

this research, it is envisaged that the next endeavors would 

result in significant enhancements in the performance of 

machine translation alignment. Moreover, it is anticipated that 
these technological improvements will considerably decrease 

the amount of data storage required, enhancing machine 

translation systems' effectiveness. 

The following research endeavors to advance the current 

state of Natural Language Processing (NLP) and has the 

potential to bring about a significant transformation in the 

area. Additionally, these initiatives will create opportunities 

for the development of innovative applications in the domain 

of machine translation. The development, as mentioned 

earlier, will introduce a novel phase of stemming 

methodologies specifically designed to meet the requirements 

of the continuously changing linguistic environment, 
addressing the necessities of forthcoming language 

processing advancements.  
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