
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Node.js Performance Benchmarking and Analysis at Virtualbox, 

Docker, and Podman Environment Using Node-Bench Method 

I Putu Agus Eka Pratama a,*, I Made Sunia Raharja a

a Department of Information Technology, Faculty of Engineering, Udayana University, South Kuta, Badung, 80232, Indonesia 

Corresponding author: *eka.pratama@unud.ac.id 

Abstract—As an asynchronous runtime environment (interpreter) for the development of scalable JavaScript-based network 

applications, it is necessary to know the performance of the web framework on Node.js in a virtualization-oriented development 

environment and a container-oriented development environment. This research aims to compare the performance of Node.js in 

several frameworks in VirtualBox, Docker, and Podman environments. The testing was carried out using some materials like a bench 

utility at Node Package Manager (NPM) involving the Adonis, Connect, Express, Fastify, Foxify, Hapi, Koa, Molecular, Plumier, 

Restify, and Sails frameworks, using Object Relational Mapping (ORM) and Raw Query Bookshelf, Knex, MySQL, MySQL2, and 

Sequelize at Ubuntu Linux operating system. The method research used in this research is the Node-Bench method with requests, 

latency, and throughput parameters. The testing results show that the best performance score is the Fastify framework with the 

Sequelize library (ORM) in a container-oriented development environment (Docker and Podman), and the worst performance score 

is the Express framework with the Mysql2 library (Raw Query) in a virtualization-oriented development environment (VirtualBox). 

Based on the testing results, developers who use Node.js are more advised to use the Fastify framework with the Sequelize library 

(ORM) in a container-oriented development environment (Docker or Podman) to obtain better performance. For further research, 

the implementation and testing at container-oriented development can use cloud-based service (IaaS cloud or PaaS Cloud) for the 

read-only immutable environment, scalability, and security reasons. 

Keywords— Docker; Node-Bench method; Node.js; Podman; VirtualBox. 

Manuscript received 22 Apr. 2023; revised 3 Jun. 2023; accepted 27 Jul. 2023. Date of publication 31 Dec. 2023. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Javascript-based application development is helped by 

Node.js. Node.js is a platform in the form of a runtime 

environment (interpreter) that functions to run applications 
developed based on JavaScript, especially for back-end 

development[1]. As an interpreter, Node.js has several 

functions to run or execute various JavaScript instructions on 

the website's back-end environment. Through Node.js, 

JavaScript can be run on multiple platforms without going 

through a web browser[2]. Web developers who use Node.js, 

generally combine it with HTML and CSS to create 

interactive websites. 

Structurally, Node.js is built using the JavaScript engine 

and has its library, so it does not have to require a webserver 

(NGINX/Apache). Node.js uses an event-driven and non-

blocking I/O model to handle multiple processes 
simultaneously (multi-thread and multi-tasking). Node.js can 

also be run in virtualization-oriented development 

environments (in this case, VirtualBox) and container-

oriented development environments (Docker and Podman), 

each with its specification requirements. 

However, developers need to know the performance of 

each framework on Node.js when running on different 

development environments. This research will compare the 

performance of Node.js in the two development 

environments, specifically in VirtualBox, Docker, and 
Podman. The testing method used is Node Bench, including 

raw SQL queries and Object Relational Mapping (ORM). 

Tests were carried out using a bench utility at Node 

Package Manager (NPM) at eleven Node.js frameworks, 

namely Adonis, Connect, Express, Fastify, Foxify, Hapi, 

Koa, Molecular, Plumier, Restify, and Sails. For ORM and 

Raw Query, Bookshelf, Knex, mysql, mysql2, and Sequelize 

are used. 

There are several previous state-of-the-art research studies 

from this research in various case studies. The first research 

describes testing five Node.js back-end frameworks (Koa, 

2240

JOIV : Int. J. Inform. Visualization, 7(4) - December 2023 2240-2246



Plumier, Express, Nest, Loopback) using the GET and POST 

methods, with the results showing that Koa has the best 

performance recommended for developers[3]. However, this 

research is limited to the Node.js back-end framework. The 

second research compares JavaScript performance using 

PHP, Python, and Node.js against REST, with the results 

showing that Node.js has the fastest response and PHP has 

the best performance [4]. This research successfully 

compares the performance of Node.js with two web 

programming languages but has not compared the 
performance of the frameworks within them.  

The third research is in the form of testing the 

performance of the Node.js front-end framework (Angular, 

React, Vue) for the use of the Application Programming 

Interface (API) on website programming[5]. The results of 

this research provide good impact and recommendations for 

front-end developers, but this research only focuses on the 

Node.js front-end framework.  

The fourth research improvised from the third research to 

test the performance comparison of the Node.js front-end 

framework (AngularJS, Aurelia, Ember) accompanied by an 
analysis of the impact on computing resource usage (CPU, 

internet bandwidth) using twelve measurement metrics: size, 

version, data binding, dependencies, controllers, scopes, 

services, directives, templates, routing, structures, and third-

party add-ons, with research showing that Aurelia has the 

best performance, Ember has the best structure, and 

AngularJS has the best third-party updates [6]. The fifth 

research is in the form of testing the performance of four 

Node.js frameworks (AngularJS, Ember, Knockout, 

Backbone) using the Model View Controller (MVC) 

architecture with the results of the advantages and 
disadvantages of each framework according to MVC rules [7].  

The sixth research is a performance comparison test of six 

object-oriented Node.js frameworks (Dojo, ExtJS, JQuery, 

MooTools, Prototype, YUI2) using a Quality Test with three 

measurement matrices (Size Metrics, Complexity Metrics, 

and Maintainability Metrics) to obtain an assessment of 

quality, validity, and performance, with research results 

showing that MooTools gets the best results[8]. The seventh 

research is in the form of testing seven versions of JQuery in 

terms of performance and validity, with the test results 

showing that the latest version of JQuery has the best value 

in terms of validation, performance, and community support 
[9]. The results of this research become a consideration for 

developers in choosing the Node.js version and framework. 

The eighth research discusses the performance and 

performance of Node.js along with quantitative analysis on 

online music servers, where the results show that Node.js 

has high reliability[10]. 

The ninth research tests and analyzes the performance 

comparison of REST and Graph-QL implemented in web-

based client-server applications using Node.js with the 

Express framework, with the test results showing that REST 

has the best performance and Graph-QL has the fastest 
response related to requests from clients and network 

bandwidth consumption [11].  

The tenth research describes testing the performance and 

memory consumption of using Node.js Javascript and 

Golang on the REST API to then be tested and evaluated 

using Google datasets with the Wilcoxon test type, paired 

data t-test, and equivalence testing, with the test results 

showing that Golang has better performance [12]. The 

eleventh research examines and analyzes several essential 

factors in Node.js in website development, including event-

driven I/0, single-threaded, and asynchronous programming, 

where the results of these tests can be input for web 

developers[13]. The twelfth research developed an academic 

information system based on Rest API using Node.js and 

PHP to compare its performance, with the results showing 

that Node.js has better throughput than PHP[14].  
The thirteenth research conducted tests on Node. Js-based 

web applications complement JavaScript on Node.js with 

Rust and Web Assembly, where test results show that Rust 

can provide low-level support for non-blocking operations 

and hardware access to JavaScript and Node.js [15]. The 

fourteenth research examines several web-based 

programming languages for full-stack requirements for use 

with Node.js and then conducts a performance review, with 

the result that JavaScript is the best language to use with 

Node.js when compared to other web programming 

languages[16]. 
The fifteenth research describes the results of a 

comparison and evaluation of web-based application 

development using Node.js and Python Django, with test 

results showing that the performance of Node.js is better 

than Django in terms of the number of requests handled, 

processing time, and transactions[17]. The sixteenth research 

describes the benefits of using Node.js to implement docker 

containers on Expert Assist, accompanied by cloud-based 

Express and MongoDB frameworks, so that the developed 

system has higher reliability[18].  

The seventeenth research conducted a performance 
comparison test of Codeigniter and Node.js Express on 

RESTful API, with the test results showing that Node.js 

Express is more suitable for systems with high user access 

compared to CodeIgniter[19]. The eighteenth research 

conducted a comparative test of the performance of Golang 

and Node.js as web-based back-end applications with 

MySQL DBMS, with the test results showing that in terms 

of response time, Node.js and MySQL were the best, while 

in terms of memory and resource usage CPU computing, 

Golang and MySQL are the best[20].  

The nineteenth research evaluates the performance of 

Node.js in a JavaScript-based server-side web development 
environment from the perspective of multithreading, 

asynchronous I/O, and event-driven programming models, 

with test results showing that Noje.js has good complexity 

and support[21]. The twentieth research on the performance 

of the Node.js framework from a web browser perspective 

uses SAPUI5 and JQuery based on HTML5, CSS3, and 

JavaScript libraries, specializing in Single Page Applications 

(SPA)[22]. The results of this research contribute in the form 

of an overview of the performance of the JavaScript 

framework on the client side via a web browser, especially 

regarding the GET and POST methods related to URL 
parsing and query string parsing. 

Based on this previous research, one of the main problems 

in Node.js that has not been discussed is the performance 

comparison of the Node.js framework in virtualization-

oriented and container-oriented development environments. 

This is important considering that developers use one or both 

2241



types of development environments, so they need to be 

compared. For this reason, using the Node Bench method, 

this research tested the performance of the Node.js 

framework in a virtualization-oriented and container-

oriented development environment. Each Node.js framework 

will be tested in both development environments, and then 

each performance will be measured to obtain information 

regarding which development environment and which 

framework is the best and recommended for developers. 

II. MATERIAL AND METHOD 

A. Hardware and Software 

This research used several hardware and software. For 

hardware, the Dell Inspiron 15 Notebook is used with Intel 

i7-6500U (4) @ 3.100GHz, Intel Skylake GT2 [HD 

Graphics 520] specifications and 16GB of memory. The 

Linux Ubuntu 22.04 LTS operating system, VirtualBox, 

Docker, Podman, Node.js, and Node.js Package Manager 

(NPM) are used for software. 
VirtualBox is an open-source licensed software product 

from Oracle, which uses the concept of virtualization to run 

a guest operating system along with its libraries and 

applications on a computer with a host operating system and 

hypervisor on it [23]. With the availability of VirtualBox, 

users can perform virtualization from various operating 

systems on the primary operating system. Examples of 

virtualization include running the Free BSD operating 

system through Virtualbox on Linux Ubuntu, computer 

network virtualization, server virtualization, embedded 

hypervisor models, and cloud services (IaaS, PaaS, SaaS) 

[24]. Figure 1. shows the architecture of a Virtualbox with a 
host operating system and a guest operating system: 

 

 
Fig. 1  The architecture of a Virtualbox 

 

Docker is open-source software that facilitates automation 

in the development and deployment of software into 

containers, making it possible to virtualize and run 
applications and operating systems by adding a layer for 

deployment[25]. Docker consists of 2 parts: the docker 

server (daemon), which receives requests from the docker 

client and processes them, and the docker client used by the 

user.  

A Linux container (which allocates computing resources 

through the kernel) is run by Docker for process 

virtualization at the operating system level, making it 

possible to run multiple containers in a single control host 

and isolated [26]. Figure 2. shows the architecture of 

Docker. 

 

 
Fig. 2  The architecture of a Docker 

 

Podman is open-source software for managing, 

discovering, running, and sharing pods, containers, container 
images, and container volumes based on the libpod library. 

Podman isolates processes from their surroundings so 

services can run well and independently. Podman has several 

commands in the Linux Terminal for easy integration with 

Docker in system operation and integration[27]. Each 

Podman has an infrastructure for containers, which aims to 

connect containers to pods. However, unlike Docker, 

Podman does not use a daemon for communication. Figure 

3. illustrates the structure of Podman: 

 

 
Fig. 3  The architecture of a Podman 

 

Node.js is a runtime environment for JavaScript that is 
open-source and cross-platform. Meanwhile, Node Package 

Manager (NPM) is an open-source licensed online package 

manager and repository for the Node.js framework, which 

functions to assist developers in package management, 

model installation, package dependency management, 

package installation and uninstallation, and running the 

developed web software [28]. With the availability of NPM, 

developers can easily and quickly develop web and software 

2242



based on Node.js and meet the need for libraries and their 

dependencies. On Linux operating systems, Node.js and 

NPM are made available through online repositories on the 

internet[29]. Figure 4. shows a developer's connectivity chart 

with Node.js and NPM: 

 

 
Fig. 4  The connectivity between developer and NPM 

B. Node Bench Method 

Node-Bench Method is a testing method specifically for 

website development platforms based on Node.js on a side-

by-side basis, which focuses on web performance in terms of 

frameworks, libraries, and the development environment 

used by developers [30]. The Node-Bench method is not 

oriented to network protocols and computer networks, but 

focuses more on the capabilities of each tested framework, 

which includes requests, latency, and throughput. 

Testing on a web-based software built using Node.js as 
well as performance testing of a number of Node.js 

frameworks that use the Node-Bench method, can use open-

source licensed libraries and utilities in the form of the 

Node-Bench library[31] and Nano Bench[32]. which are 

both JavaScript and Shell Script based.  

Testing a Node. js-based software, framework, and library 

using the Node-Bench method, includes four sequential 

steps: 1.)Preparing a development environment that supports 

Node.js and a number of frameworks to be tested, 2.) 

Installing and configuring the library and utilities supporting 

the Node-Bench method, 3.)Testing each framework and 

library according to each case study, 4.)Recording of results, 
average the results, analysis, and conclusions. 

In some cases, testing with the Node-Bench method can 

collaborate using Object Relational Mapping (ORM) and 

Raw Query, which are generally supported by several 

Node.js frameworks. ORM is more widely used in object-

oriented case studies to be aligned with relational databases, 

while Raw Query has functionality and similarities to 

queries in general but with less memory consumption. 

C. Research Flowchart 

The research flowchart starts from the preparation stage, 

where the installation, configuration, and running of the 

Linux operating system, Node.js, NPM, Virtualbox, Docker, 

Podman, and the Node-Bench utility are carried out. The 

Node.js frameworks and libraries that will be tested are run 

in all three development environments (VirtualBox, Docker, 

Podman) and then tested based on Node-Bench on requests, 

latency, and throughput. The test results are stored in three 

tables, then made into a graphic form, and analyzed to obtain 

a conclusion. The research flowchart using the Node-Bench 

method is shown in Figure 5.: 

 
Fig. 5  The research flowchart 

III. RESULT AND DISCUSSION 

A. Test Result on VirtualBox 

The results of testing the performance of Node.js 

frameworks using the Node-Bench method in VirtualBox for 

requests, latency, and throughput are shown in Table 1. and 

the graph from Table I. shown in Figure 6.: 

TABLE I 

TEST RESULT ON VIRTUALBOX 

Framework:Library Request Latency Throughput 

adonis:mysql2 7451 13 0.8 
adonis:sequelize 4999 19 0.5 
connect:mysql2 1400 68 0.3  

connect:sequelize 6000 14 1 
express:mysql2 789 115 0.2 
express:sequelize 2214 44 0.6 
fastify:mysql2 1395 67 0.3 
fastify:sequelize 7199 13 1.7 
foxify:mysql2 1395 67 0.3 
foxify:sequelize 6896 14 1.5 
hapi:mysql2 938 98 0.2 

hapi:sequelize 3275 29 0.5  

 

2243



 
Fig. 6  The graph of test results on Virtualbox 

 

Based on framework performance testing with different 

libraries in the VirtualBox environment in Table I. and 

Figure 6., in general, the performance of the Sequelize 

(ORM) library with the Connect, Express, Fastify, Foxify, 

and Hapi frameworks is better than the performance of the 

Mysql2 (Raw Query) library with the same framework. The 

average performance value of the Sequelize library is almost 
seven times the performance value of the Mysql2 library. 

However, the exception is in comparing the Adonis 

framework for the two libraries, where the performance of 

the Mysql2 library is almost double Sequelize library. 

B. Test Result on Docker 

The results of testing the performance of Node.js 

frameworks using the Node-Bench method in Docker for 

requests, latency, and throughput are shown in Table II. and 

the graph from Table II. shown in Figure 7.: 

TABLE II 

TEST RESULT ON DOCKER 

Framework:Library Request Latency Throughput 

adonis:mysql2 9650 10 1.0 
adonis:sequelize 8496 11 0.9 
connect:mysql2 2880 33 0.6 
connect:sequelize 10900 8.7 2.5 
express:mysql2 1526 59 0.4 

express:sequelize 3409 28 1.0 
fastify:mysql2 2914 33 0.6 
fastify:sequelize 11581 8 2.7 
foxify:mysql2 2543 36 0.5 
foxify:sequelize 8332 11 1.5 
hapi:mysql2 2005 47 0.5 
hapi:sequelize 6593 14 1.7 

 

 
Fig. 7  The graph of test result on Docker 

 

Based on framework performance testing with different 

libraries in the Docker environment in Table II., in general, 

the performance for all tested frameworks and libraries is 

better than the test results on VirtualBox, with an increase of 

around 10% to 20%. This is because, as a container, Docker 

only needs to change the configuration and rebuild the 

container to optimize the running of the framework and 

libraries.  

In addition, the communication at Docker is daemon-

based, where daemon connects between developers and 
containers. In VirtualBox (virtualization), the initial 

configuration of the guest operating system (which runs on 

top of the host operating system) is mandatory before 

configuring the framework and libraries. It causes 

VirtualBox to consume more computational resources than 

Docker (container). VirtualBox also does not involve 

daemons like Docker does. 

C. Test Result on Podman 

The results of testing the performance of Node.js 

frameworks using the Node-Bench method in Podman for 

requests, latency, and throughput are shown in Table III. and 

the graph from Table III. shown in Figure 8.: 

TABLE III 

TEST RESULT ON PODMAN 

Framework:Library Request Latency Throughput 

adonis:mysql2 11137 12 1.2 
adonis:sequelize 10218 9 1.1 
connect:mysql2 3041 31 0.7 
connect:sequelize 9430 10 2.2 
express:mysql2 1704 55 0.5 
express:sequelize 4799 20 1.4 
fastify:mysql2 3161 30 0.7 

fastify:sequelize 11496 8 2.7 
foxify:mysql2 2914 33 0.6 
foxify:sequelize 10591 9 2.3 
hapi:mysql2 2009 48 0.5 
hapi:sequelize 6463 14 1.7 

 

 

 
Fig. 8  The graph of test results on Podman 

 

Based on framework performance testing with different 

libraries in the Podman environment in Table III., in general, 

the performance for all tested frameworks and libraries is 

better than the test results on Docker and VirtualBox, with 

an increase of around 15%. Podman has more value than 

Docker and VirtualBox, where Podman does not require a 

daemon for communication like Docker but does not spend 

computing resources through virtualization and 

2244



configuration of guest operating systems as is the case with 

VirtualBox. Podman only requires process isolation so that it 

can be more independent from its development environment. 

By comparing the results of the three tests of Node.js 

frameworks in the VirtualBox, Docker, and Podman 

development environments (request, latency, throughput), 

can be displayed in Figure 9., Figure 10., and Figure 11.: 

 

 
Fig. 9  The performance benchmark (request) 

 

 

Fig. 10  The performance benchmark (latency) 

 

 

Fig. 11  The performance benchmark (throughput) 

 

The graph in Figure 9., Figure 10., and Figure 11., shows 

that the performance of the Node.js framework in container-

oriented development environment (both Docker and 

Podman) is better than virtualization-oriented development 

environment (VirtualBox). This is because the container-

oriented development environment does not require guest 

operating system configurations as is the case with 

virtualization-oriented development environment, making it 
more efficient in computing resources and faster.  

For the performance of the Node.js framework in a 

container-oriented development environment, Podman is 

better than Docker. This is because Podman does not involve 

daemons like Docker but isolates its processes. 

The Fastify framework with the Sequelize library (ORM) 

in a container-oriented development environment (Docker 

and Podman) has the best performance score for all 

frameworks and libraries tested. In contrast, the Express 

framework with the Mysql2 library (Raw Query) in a 

virtualization-oriented development environment 

(VirtualBox) has the worst performance score. 

Overall, the contribution of this paper is to provide 
recommendations to Node. js-based developers in choosing 

the best framework, library, and Node.js development 

environment to use in OPM and Raw Query based on the 

best performance in terms of request, latency, and 

throughput. 

IV. CONCLUSIONS 

Based on the results, it can be concluded that in terms of 
the development environment, a container-oriented 

development environment (Docker and Podman) provides 

better performance support than a virtualization-oriented 

development environment (VirtualBox). Meanwhile, the 

Fastify framework with Sequelize library (ORM) has the 

best performance in terms of development framework and 

libraries. Thus, developers who use Node.js are advised to 

use the Fastify framework with the Sequelize library (ORM) 

on Docker and Podman to get the best performance that 

supports smooth development. Developers are discouraged 

from using a virtualization-oriented development 

environment such as VirtualBox.  
For further research, implementation, and testing of 

container-oriented development, cloud-based services can be 

used, especially Infrastructure as a Service (IaaS) Cloud and 

Platform as a Service (PaaS) Cloud. In this case, the cloud is 

expected to be able to provide an immutable read-only 

environment as well as security reasons in both Raw Query 

and Node.js. 

ACKNOWLEDGMENT 

Gratitude to the Node.js Community, the Indonesian 

Linux Community, the FOSS/open source Community, 

Udayana University, Ananta and the team, and family for the 

support during this research. 

REFERENCES 

[1] D. Herron, Web Development: Server-Side Web Development Made 

Easy with Node 14 Using Practical Examples. Packt Publishing, 

2020. 

[2] Y. P. D. and W. S. Raharjo, "Performance and Scalability Analysis of 

Node.js and PHP/Nginx Web Application," J. Inform., vol. 9, no. 2, 

2014. 

[3] I. P. A. Eka Pratama, “Pengujian Performansi Lima Back-End 

JavaScript Framework Menggunakan Metode GET dan POST,” J. 

RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1216 

– 1225, 2020. 

[4] A. C. Rompis and R. F. Aji, “Perbandingan Performa Kinerja 

Node.js, PHP, dan Python dalam Aplikasi REST,” CogITo Smart J., 

vol. 4, no. 1, pp. 171–187, 2018. 

[5] S. Maganahalli and P. R. R, "Comparison of JavaScript Frontend 

Frameworks and Web API Services," Int. Res. J. Eng. Technol., vol. 

7, no. 6, pp. 108–112, 2020. 

[6] J. Ferreira, "A JavaScript Framework Comparison Based on 

Benchmarking A JavaScript Framework Comparison Based on 

Benchmarking Software Metrics and Environment Configuration 

2245



Software Metrics and Environment Configuration," Dissertations, p. 

159, 2018. 

[7] S. Delcev and D. Draskovic, "Modern JavaScript frameworks: A

Survey Study," in 2018 Zooming Innovation in Consumer 

Technologies Conference, ZINC 2018, 2018, pp. 106–109. 

[8] A. B. Gizas, S. P. Christodoulou, and T. S. Papatheodorou, 

"Comparative Evaluation of JavaScript Frameworks," in WWW'12 - 

Proceedings of the 21st Annual Conference on World Wide Web 

Companion, 2012, pp. 513–514. 

[9] A. Gizas, S. P. Christodoulou, and T. S. Papatheodorou, "Quality and 

performance assessment of jQuery JavaScript framework," Proc. 

IADIS Int. Conf. WWW/Internet 2011, ICWI 2011, vol. 3, pp. 284–

292, 2011. 

[10] S. S. Patil and P. S. D. Joshi, "Identification of Performance

Improving Factors for Web Application by Performance Testing .,"

Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 8, pp. 433–436, 2012. 

[11] G. S. Mas Diyasa and G. S. Budiwitjaksono, "Comparative Analysis

of Rest and GraphQL Technology on Nodejs-Based Api 

Development," Nusant. Sci. Technol. Proc., 2021. 

[12] H. Ardiansyah and A. Fatwanto, “Comparison of Memory Usage 

between REST API in Javascript and Golang,” Matrik  J. 

Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 1, pp. 

229–240, 2022. 

[13] G. Jadhav and F. Gonsalves, "Role of Node.js in Modern Web

Application Development," Int. Res. J. Eng. Technol., vol. 7, no. 6, 

pp. 6145–6150, 2020. 

[14] A. A. Prayogi, M. Niswar, Indrabayu, and M. Rijal, "Design and

Implementation of REST API for Academic Information System," in

IOP Conference Series: Materials Science and Engineering, 2020, 

vol. 875, no. 1, p. 875. 

[15] K. I. D. Kyriakou and N. D. Tselikas, "Complementing JavaScript in

High-Performance Node.js and Web Applications with Rust and

WebAssembly," Electron., vol. 11, no. 19, 2022. 

[16] B. Basumatary and N. Agnihotri, "Benefits and Challenges of Using

NodeJS," Int. J. Innov. Res. Comput. Sci. Technol., vol. 10, no. 3, pp. 

67–70, 2022. 

[17] D. A. Sharma, A. Jain, A. Bahuguna, and D. Dinkar, "Comparison 

and Evaluation of Web Development Technologies in Node.js and 

Django," Int. J. Sci. Res., vol. 9, no. 12, pp. 1416–1420, 2019. 

[18] S. Sutanto, W. Gunawan, and F. Faeshal, “Arsitektur Container 

Docker Pada Aplikasi Expert Assist Dengan Teknologi Node.Js, 

Express Framework & Cloud Database Nosql Mongodb Atlas,” J.

Sist. Inf. dan Inform., vol. 4, no. 1, pp. 73–89, 2021. 

[19] L. Mulana, K. Prihandani, A. Rizal, U. Singaperbanga, and K. 

Abstract, “Analisis Perbandingan Kinerja Framework Codeigniter 

Dengan Express.Js Pada Server RESTful Api,” J. Ilm. Wahana 

Pendidik., vol. 8, no. 16, pp. 316–326, 2022. 

[20] F. Effendy, Taufik, and B. Adhilaksono, "Performance Comparison 

of Web Backend and Database: A Case Study of Node.JS, Golang 

and MySQL, Mongo DB," Recent Adv. Comput. Sci. Commun., vol.

14, no. 6, pp. 1955–1961, 2019. 

[21] S. Tilkov and S. Vinoski, "Node.js: Using JavaScript to build high-

performance network programs," IEEE Internet Comput., vol. 14, no. 

6, pp. 80–83, 2010. 

[22] J. Raigoza and R. Thakkar, "Browser Performance of JavaScript 

Framework, SAPUI5 & jQuery," in Proceedings - 2016 International 

Conference on Computational Science and Computational 

Intelligence, CSCI 2016, 2017, pp. 1420–1421. 

[23] M. K. ANam, D. Sudyana, A. N. Ulfah, and N. Lizarti, “Optimalisasi

Penggunaan VirtualBox Sebagai Virtual Computer Laboratory untuk 

Simulasi Jaringan dan Praktikum pada SMK Taruna Mandiri

Pekanbaru,” J-PEMAS-Jurnal Pengabdi. Masy., vol. 1, no. 2, pp. 39–

44, 2020. 

[24] Sutarti, A. P. Pancaro, and F. I. Saputra, “Implementasi IDS 

(Intrusion Detection System) Pada Sistem Keamanan Jaringan 

SMAN 1 Cikeusal,” J. PROSISKO, vol. 5, no. 1, pp. 1–8, 2018. 

[25] B. B. Rad, H. J. Bhatti, and M. Ahmadi, "An Introduction to Docker 

and Analysis of its Performance," IJCSNS Int. J. Comput. Sci. Netw.

Secur., vol. 17, no. 3, pp. 228–235, 2017. 

[26] B. Gerardus, Docker Security: A Complete Guide. 5STARCooks

Publisher, 2020. 

[27] C. Mukmin, T. Naraloka, and Q. H. Andriyanto, “Analisis

Perbandingan Kinerja Layanan Container AS A Service (CAAS) 

Studi Kasus : Docker dan Podman,” Kumpul. J. Ilmu Komput., vol.

08, no. 2, 2021. 

[28] Nasution and L. Iswari, “Penerapan React JS Pada Pengembangan 

FrontEnd Aplikasi Startup Ubaform,” J. Autom. - UII, vol. 2, no. 2,

pp. 193–200, 2021. 

[29] D. Guttman, "Fullstack Node.js The Complete Guide to Building

Production Apps with Node.js," 2019. [Online]. Available:

Fullstack.io.

[30] H. Shah and T. R. Soomro, "Node.js Challenges in Implementation," 

Glob. J. Comput. Sci. Technol., vol. 17, no. E2, pp. 73–84, 2017. 

[31] Isaacs, "Node Bench Library," Github, 2022. [Online]. Available: 

https://github.com/isaacs/node-bench. 

[32] Mafintosh, "NPM JS. Nanobench Library," NPM, 2023. [Online]. 

Available: https://www.npmjs.com/package/nanobench.

2246




