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Abstract— Convolutional Neural Networks (CNNs) have become essential to solving image classification tasks. One of the most frequent 

models of CNNs for image classification is the Visual Geometry Group (VGG). The VGG architecture is made up of multiple layers of 

convolution and pooling processes followed by fully connected layers. Among the various VGG models, the VGG16 architecture has 

gained great attention due to its remarkable performance and simplicity. However, the VGG16 architecture is still prone to have many 

parameters contributing to its complexity. Moreover, the complexity of VGG16 may cause a longer execution time. The complexity of 

VGG16 architecture is also more highly prone to overfitting and may affect the classification accuracy. This study proposes an 

enhancement of VGG16 architecture to overcome such drawbacks. The enhancement involved the reduction of the convolution blocks, 

implementing batch normalization (B.N.) layers, and integrating global average pooling (GAP) layers with the addition of dense and 

dropout layers in the architecture. The experiment was carried out with six benchmark datasets for image classification tasks. The 

results from the experiment show that the network parameters are 79% less complex than the standard VGG16. The proposed model 

also yields better classification accuracy and shorter execution time. Reducing the parameters in the proposed improved VGG 

architecture allows for more efficient computation and memory usage. Overall, the proposed improved VGG architecture offers a 

promising solution to the challenges of long execution times and excessive memory usage in VGG16 architecture.  
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I. INTRODUCTION

Image classification is one of the applications in machine 
learning, aiming to develop algorithms that can recognize and 
classify the content of an image with near human-level 
accuracy. The recent years have witnessed significant 
improvements in the use of advanced machine learning 
techniques, namely deep learning, for image classification 
[1],[2]. Deep learning techniques, notably Convolutional 
Neural Networks (CNNs), have revolutionized the vision of a 
computer in the field of image classification  [3], [4], [5], 
making it the most preferred and implemented machine 
learning method. Moreover, image classification has 
demonstrated outstanding performance employing CNNs to 
extract deep representations of training data where it produced 
results equal to or better than those produced by humans. 

As a deep learning technique, CNNs take an input image 
and apply weights and biases to various objects to aid object 
recognition [6]. There have been many CNN models up until 
this point, including AlexNet [7], DenseNet [8], 

GoogleNet/InceptionNet [9], LeNet [10], ResNet [11], 
SqueezeNet [12], Visual Geometry Group (VGG) [13], 
Xception [14] and ZFNet [15]. Among the various CNNs, the 
VGG architecture stands out for its simplicity and efficacy in 
image classification tasks. The VGG16 network has 
demonstrated state-of-the-art results in various computer 
vision applications, including object recognition [16], image 
classification [17], and image retrieval [18]. 

The VGG16, one of the VGG networks, is a deep neural 
network architecture that concludes with 16 layers. It was 
introduced in 2014, and cutting-edge results in image 
classification tasks were obtained[13]. The network 
architecture comprises 13 convolution layers stacked with 
three fully connected layers. The convolution layers use small 
filters of size 3 x 3. Despite its success, the VGG architecture's 
deep and parameter-heavy design addresses challenges in 
practical implementations, especially for real-time 
applications and resource-constrained devices. A larger 
parameter size results in a longer execution time and produces 
more memory usage, leading to limited scalability [19]. To 
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address this drawback, this study focuses on reducing the 
VGG parameter while maintaining its high accuracy. The 
proposed method involves downsizing the VGG architecture 
by reducing the parameters, aiming to make the model more 
compact and efficient. The ultimate objective is to strike a 
balance between execution time and accuracy, thereby 
enhancing the reliability and applicability of VGG in real-
world scenarios. 

By achieving a downsized VGG architecture, the proposed 
method can provide better image classification performance 
than other existing VGG architectures with faster execution 
times. The need to improve the reliability of VGG in practical 
applications motivates this research, where speed and 
efficiency are critical factors. 

II. MATERIALS AND METHOD 

This study aims to provide an improved VGG architecture 
for image classification by downsizing the network and 
training it on six image datasets. The proposed method 
contains two convolution blocks with a pooling and batch 
normalization (B.N.) layer in each block. To ensure linearity, 
the ReLu activation function is used during training [20]. 
Following that, the global average pooling (GAP) layer, three 
dense layers with SoftMax activation function and dropout of 
0.2, 0.4, and 0.6, respectively, were used to analyze the 
images. 

Furthermore, the B.N. layer has been put together to 
normalize the output of previous layers in order to address the 
issue of randomly changed minibatch samples that could 
result in gradients exploding or disappearing [21] during the 
feature extraction. Next, the GAP layer will be employed for 
the classifier rather than the flatten layer to minimize the 
number of parameters that cause a longer execution time and 
may lead to overfitting [21]. Moreover, instead of using two 
dense layers from the standard VGG16, three layers will be 
implemented because by adding extra layers to the dense part, 
the network's efficacy can be strengthened, and the accuracy 
can be increased [22].  

Finally, dropout layers will be placed after each dense layer 
to reduce the complexity and avoid overfitting, which can 
reduce network performance [23]. Dropout generates 
independent activations by establishing independent random 
gates for neurons in a layer [24], which also cuts off the 
incoming and outgoing connections to the neurons when the 
neurons are turned off. This step is taken to enhance the 
learning process of the network. Fig. 1 illustrates the 
architecture of the proposed improved VGG. 

 

 
Fig. 1  The proposed improved VGG architecture 

 
Several steps have been taken to accomplish the study's 

goal, including data collecting, architecture development, 
implementation, and performance analysis of the 

architectures. The method structure is graphically presented 
in Fig. 2. The next subsections describe the actions in more 
detail.  
 

 
Fig. 2  The method structure 

A. Data Collection 

In this research, a comprehensive evaluation was 
conducted using six Kaggle image datasets. The datasets were 
selected to encompass various image categories, including 
brain tumor, cloth, forest, road, Rome weather, and room. 
Table 1 provides a detailed overview of each dataset, 
including the name, total number of images, and number of 
classes. To ensure unbiased training and testing of the 
architecture, the entire dataset was randomly split into two 
divisions: the training set and the testing set. The amount of 
80% of the whole dataset was used for training purposes, 
while the other 20% remaining amount of the dataset has been 
utilized for testing the architecture. 

TABLE I 

DATASET DETAILS 

No 
Image Datasets 

Name Total Images No. of Classes 

1 Brain Tumor 171 2 
2 Cloth 398 2 
3 Forest  166 2 
4 Road 669 2 
5 Rome Weather 250 5 
6 Room 192 2 

 
The selection of the brain tumor, cloth, forest, road, Rome 

weather, and room datasets in the experiment reflects various 
domains and classification tasks, spanning medical imaging, 
fashion, environmental monitoring, road infrastructure, 
weather, and room conditions. While some datasets have 
multiple classes and others have two classifications, the 
choice comprehensively evaluates the proposed architecture's 
performance across various real-world applications. 
Including different domains and classifications, complexities 
can impact the results, requiring specific considerations in 
model design and evaluation metrics. Overall, this diverse 
dataset selection enables insights into the architecture's 
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effectiveness and its potential application in multiple 
domains. 

B. Process of Developing the Proposed Method 

The VGG model is employed for image classification in 
CNNs due to its high accuracy [25], [26]. However, the 
drawback of VGG model is its large number of parameters, 
which can cause slower execution times. Additionally, the 
abundance of parameters requires a longer training duration, 
and the broader model is more susceptible to overfitting, 
which can impact classification accuracy [27]. To evaluate the 
efficacy and reliability of the proposed method, we compared 
the evaluation results with other existing architectures, 
namely VGG16 [13], VGG16 2021 [22] and VGG 2020 [21]. 
This stage determines if the proposed architecture could 
outperform or match the performance of the existing 
architecture. 

To facilitate the comparison, this study included a table 
containing the details of the compared architectures. Table 2 
includes three columns: the key used to address the article 
reviewed, the reference source, and the name of the model 
developed by the authors. By comparing the proposed 
method's performance with existing architectures, this study 
aimed to demonstrate its superiority and ability to be applied 
in actual circumstances. This comparative analysis also 

provides insights into the strengths and weaknesses of each 
architecture, which could inform future research in the field. 

TABLE II 

THE DETAILS OF THE ARCHITECTURE 

Key Reference Method 

A1 Simonyan & Zisserman [13] VGG16 
A2 Islam et al., [22] VGG16 2021 
A3 Zhongqin Bi et al., [21] VGG 2020 

 
VGG16 is a type of architecture within CNNs, proposed in 

2013 and refined based on the 2014 ImageNet Challenge. 
VGG16 differs from earlier models like AlexNet and ZFNet 
by using smaller 3x3 receptive fields with a stride of one pixel 
for the whole network, as opposed to larger fields used in 
previous models. VGG16 has five sets of convolutional layers 
and three fully connected layers and employs max pooling to 
reduce dimensionality [28]. It uses three fully connected 
layers after the convolutional layers, the first two with 4096 
neurons and the last with 1000 neurons corresponding to 
ImageNet classes. The SoftMax activation layer is placed 
after the output layer for classification [29]. Next, VGG16 
2021 has improved standard VGG16 by removal of several 
layers, particularly after the first 3 x 3 layer in the fifth 
convolutional block, as depicted in Fig. 3.  

 

 
Fig. 3  The comparison of the architecture 

2500



To enhance robustness and classification accuracy, new 
dense layers were introduced in the fully connected block, 
consisting of three layers with units of 1,024, 512, and 288. 
Dropout layers were added after each dense layer to prevent 
overfitting, with dropout rates of 0.2, 0.4, and 0.6, 
respectively. The first layers until the fourth convolutional 
block were frozen during training. Furthermore, VGG16 2020 
retains the first three blocks of VGG16 while removing a 
convolution layer from the third block. To counter gradient 
issues during training, a B.N. layer is introduced to normalize 
input maps for improved stability. The standard VGG16 
includes two dense layers with 4096 units each, leading to 
complexity and slower execution. In contrast, the VGG16 
2020 replaces these with a GAP layer, addressing parameter 
count and computation speed. 

Finally, the proposed architecture combines VGG16 2021 
and VGG16 2020 to simplify the complexity and 
computational requirements of the standard VGG16. In 
comparison to VGG16, VGG16 2021, and VGG16 2020 with 
139 590 725, 134 281 029, 113 430 533 and 1 148 485 
parameters respectively, the new architecture reduces 
parameters to 1 067 013. This results in faster execution due 
to a GAP layer replacing the flattened layer. Minimizing 
convolution blocks is crucial to prevent overfitting and 
maintain classification accuracy [27]. 

The standard VGG16, VGG16 2021, VGG16 2020, and the 
proposed architecture are varied in terms of parameters and 
computational efficiency. The standard VGG16 has larger 
parameters, potentially slowing down the execution time and 
demanding more resources [19], [21]. VGG16 2021 and 
VGG16 2020 introduce modifications to improve these 
aspects. Adopting the features of VGG16 2021 and VGG16 
2020, the proposed architecture strives to reduce parameters, 
shorten the execution time, and enhance the accuracy of its 
applicability in real-world scenarios.  

Fig. 3 is a visualization illustrating the network developed 
in VGG16, VGG16 2021, VGG16 2020, and the proposed 
method. It is likely a diagram that depicts the flow of data 
through the neural network, including the types of layers used, 
the number of filters used in each layer, and the connections 
between them. The input size of an architecture refers to the 
dimensions of the image that it can accept as input. In this 
case, all the architectures mentioned above have the same 
input size, which is 224 for height and 224 for width, with a 
depth of 3 representing the three-color channels (red, green, 
and blue) of the RGB image.  

This research was conducted with specific hardware and 
software configurations. The training process was executed 
on a computer with M1 chip, 8-core GPU, 8-core CPU, and 
16-core Neural Engine. The computer was equipped with 16 
G.B. of RAM, and the programming language used for 
writing the code was Python. Jupyter Notebook was the 
platform for developing and executing the code, while 
TensorFlow was the deep learning framework employed for 
the experiment. The number of epochs set for the training 
process was 100. 

C. Implementation of the Proposed Architecture 

The third stage of the research involves the implementation 
of the proposed architecture. The expected outcome is to 
reduce the complexity of the standard VGG16 architecture. 

The comparison between the overall architecture of the 
standard VGG16 and the proposed improved VGG can be 
visualized side-by-side in Fig. 4. The proposed architecture is 
expected to show better performance in terms of accuracy and 
speed. The implementation will be carried out using the same 
experimental setup as described in the previous statement.  

 

 

Fig. 4  The improvement of the VGG16 architecture 

 
Implementing the proposed method involves including 

B.N. layers located after every pooling layer during the 
feature extraction phase, which is not present in the standard 
VGG16 architecture. This modification is expected to 
accelerate the training speeds of the architecture [30]. 
Including B.N. layers during each epoch helps normalize data 
distribution and leads to improved convergence speeds while 
reducing the tendency of parameter changes caused by varied 
data distributions [31]. Fig. 5 shows the network's 
improvement in the architecture's first convolution block. 

 
Fig. 5  The first convolution block of the proposed architecture 

 
To address the issue of large memory usage in VGG16, the 

proposed architecture adopted a strategy of reducing the 
number of convolution blocks. Specifically, the first and 
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second convolution blocks in the standard VGG16 were 
frozen, and the remaining blocks were removed. This led to a 
significant reduction in the number of total parameters from 
134 268 738 in the standard VGG16 to 1 067 013 in the 
proposed architecture. This reduction in parameter count not 
only addresses the issue of limited storage capacity in several 
computers but also leads to faster execution times. In this 
study, the implementation focuses on smaller or simpler 
datasets, where a compact model can effectively learn the 
relevant features [32], [33]. The improvement of the second 
convolution block of the proposed architecture is illustrated 
in Fig. 6. 

 

 
Fig. 6  The second convolution block of the proposed method 

 
In the standard VGG16 architecture, the flattening layer 

has a large number of elements in the output of the last 
convolution layer after flattening, precisely a vector of size 25 
088, which impacts the overall execution time and memory 
usage. In order to address this issue, this study utilizes the 
GAP layer instead of the flattened layer, as it is parameter-
free, which can possibly significantly decrease the number of 
parameters in the architecture [34]. According to a previous 
study, utilizing GAP layer has been found to reduce the 
number of parameters and computational complexity [35]. 
Using the GAP layer decreases the vector's size in the layer to 
128, which is obtained from the previous layer. Fig. 7 
represents the classifier of the standard VGG16 and the 
proposed method. The proposed method uses the GAP layer 
instead of the flattened layer, which can minimize the number 
of parameters and improve the execution time. 

Adding extra dense layers can help to analyze more 
complicated forms of the input data and increase the model's 
capacity to capture high-level features [22]. This can 
ultimately lead to better classification performance. 
Furthermore, every neuron in each dense layer is typically a 
hyperparameter that must be tuned based on the dataset and 
the complexity of the task. In this study, the proposed 

architecture uses three dense layers with 1024, 512, and 288 
neurons to achieve better classification performance 
compared to the standard VGG16. Three dense layers give the 
model more ability to recognize and learn complex 
correlations and patterns in input data [36]. It is worth noting 
that adding more layers and increasing the neurons can also 
increase the tendency to overfit. Therefore, it is important to 
carefully choose the number of layers and neurons and apply 
regularization techniques, such as dropout, to prevent 
overfitting. 

 

 

Fig. 7  The classifier of the proposed method 

 
Finally, dropout layers are a regularization technique used 

to reduce overfitting in neural networks [20], [37]. Overfitting 
is a problem that happens when a model becomes overly 
complex to learn the data used for training [38], [39], [40], 
[41]. Hence, the overfitting must be reduced in order to lower 
the cost of misclassification in the architecture [42]. During 
training, the number of neurons in the network is randomly 
dropped out or ignored, which forces the network to analyze 
more robust and generalizable features. The dropout rate is a 
hyperparameter that needs to be tuned based on the specific 
problem and dataset. This research added dropout layers with 
rates of 0.2, 0.4, and 0.6 after each dense layer.  

D. Performance Analysis  

Several evaluation metrics have been used to measure and 
compare the proposed method's effectiveness with other 
architectures. These metrics include the execution time which 
measures the time taken for the model to make predictions, 
and the classification accuracy, which measures the ability of 
the model to classify images into their respective categories 
correctly. In order to ensure a fair evaluation of the proposed 
method's performance, it is important to evaluate its execution 
time on the same platform and in the same state. This is 
because varying machine specifications or tool versions could 
introduce bias in the feature extraction, and other tasks 
running on the CPU could impact the time taken for feature 
extraction. In order to ensure consistent evaluation, the 
execution time will be measured in hours (h). 

The proposed architecture's accuracy will be assessed 
using the confusion matrix, a straightforward and 
uncomplicated metric for measuring correctness and 
accuracy. The confusion matrix is typically employed in 
classification problems where the output could belong to two 
or more classes. It comprises a two-dimensional table which 
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is Actual and Predicted with sets of classes in both 
dimensions. A diagrammatic representation of the confusion 
matrix is displayed in Fig. 8. 

 

 

Fig. 8  Confusion matrix 

 
In Fig. 8, a confusion matrix is presented to evaluate the 

performance of the classification model. In the context of 
classification problems, accuracy is a crucial metric that 
represents the proportion of correct predictions made by the 
model out of all the predictions made. Equation (1) is used to 
calculate accuracy, which considers the number of True 
Positives (T.P.), True Negatives (T.N.), False Positives (F.P.), 
and False Negatives (F.N.). 

 

Accuracy �  
TP � TN

TP � FP � FN � TN
 (1) 

III. RESULTS AND DISCUSSION 

The experimental results of the proposed improved VGG 
architecture are presented in this section, including the 
evaluation of execution time and classification accuracy on 
six different datasets trained on the same platform. These 
results are essential to assess the proposed architecture's 
effectiveness and determine its potential applications in real-
world scenarios. The Adam optimizer was used during the 
training process due to its suitability for handling models with 
a large number of parameters [43]. The number of epochs was 
set to 100, and the implicit regularization of the model's 
greater depth and smaller convolution filter sizes, along with 
pre-initialization of certain layers, allowed the networks to 
converge in fewer epochs [13]. 

TABLE III 
PERFORMANCE ANALYSIS BASED ON EXECUTION TIME 

No. Datasets 

Execution Time (h) 

A1 A2 A3 
Proposed 

Method 

1 
Brain 
Tumor 

0:17:47 0:17:05 0:09:35 0:06:13 

2 Cloth 0:46:05 0:39:07 0:31:35 0:19:27 
3 Forest  0:20:59 0:14:44 0:11:36 0:06:56 
4 Road 1:21:49 1:11:01 0:43:17 0:26:26 

5 
Rome 
Weather 

0:24:07 0:22:50 0:12:39 0:08:36 

6 Room 0:25:05 0:21:42 0:12:34 0:09:05 
 

Table 3 is a comparison table that showcases the execution 
time performance of the proposed improved VGG 
architecture in comparison to three other existing 
architectures. The table is used to evaluate the effectiveness 
and efficiency of the proposed architecture in terms of its 

execution time. Comparing the execution time of the 
proposed method with other architectures can help determine 
the proposed architecture's potential practical applications 
and scalability. 

Fig. 9 demonstrates that the proposed architecture's 
execution time is shorter for each dataset compared to other 
architectures, and this concludes that the execution time is 
35.7% faster than the standard VGG16. The reduction in the 
number of parameters used in the proposed architecture is the 
primary reason for its compact execution, making it faster to 
execute than other VGG architectures. A model's speed is 
important in real-world applications because it can affect how 
quickly the model can provide output. Therefore, the 
proposed architecture's faster execution time is a crucial 
advantage in practice.  

 

 
Fig. 9  The execution time (h) obtained based on datasets 

 
Additionally, the compactness of the proposed architecture 

can also reduce memory usage, which is beneficial in low-
memory devices. The performance comparison of execution 
time in this study aligns with previous works, highlighting the 
importance of model size and parameter reduction for 
efficient deep-learning models [44]. Next, to validate the 
proposed architecture, the accuracy of each dataset was 
evaluated as the second metric, a popular metric in multi-class 
classification computed from the confusion matrix [45]. The 
comparison of the classification accuracy of the proposed 
improved VGG architecture with three existing architectures 
is shown in Table 4. This evaluation method has been widely 
used in various studies to validate the accuracy of deep 

learning models [28], [46], [47]. 

TABLE IV 
PERFORMANCE ANALYSIS BASED ON ACCURACY 

No. Datasets 

Accuracy (%) 

A1 A2 A3 
Proposed 

Method 

1 Brain 
Tumor 

43 43 46 77 

2 Cloth 34 58 56 59 
3 Forest  56 56 62 82 
4 Road 55 55 91 98 
5 Rome 

Weather 
12 12 26 64 

6 Room 44 44 54 67 

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

Brain

Tumor

Cloth Forest Road Rome

Weather

Room

Execution Time (h)

A1 A2 A3 Proposed Method
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The study reveals that the proposed architecture 
outperforms other VGG architectures in terms of accuracy. It 
is observed that the proposed architecture has a 41.9% 
accuracy improvement compared to the standard VGG16. 
This is demonstrated in Fig. 10, which shows the comparison 
of the proposed architecture with other architectures. 

 

 
Fig. 10  The accuracy (%) obtained based on datasets. 

 
The proposed method presented in this study reduces 

memory usage by decreasing the parameters to 1 066 146, 
compared to 134 268 738, 113 429 666, and 1 147 714 in 
architectures A1, A2, and A3, respectively. Despite the 
parameter reduction, this approach helps reduce network 
complexity and computational resources. By replacing the 
flattening layer with the GAP layer, the proposed architecture 
reduces the number of network parameters, which is 79% 
smaller in comparison with the standard VGG16, which 
contributes to shorter execution time. Throughout the training 
process, the proposed architecture shows better execution 
time results than A1, A2, and A3 architectures for all datasets. 
The proposed architecture outperforms the existing 
architectures for all six datasets for classification accuracy, 
achieving higher accuracy rates. 

The reduction in the number of parameters in the proposed 
improved VGG architecture allows for more efficient 
computation and memory usage. The GAP layer replaces the 
flatten layer, which significantly impacts the number of 
parameters and execution time. These changes contribute to 
the proposed architecture's superior performance in terms of 
execution time and classification accuracy. Overall, the 
proposed improved VGG architecture offers a promising 
solution to the challenges of long execution times and 
excessive memory usage in VGG16 architecture. The results 
demonstrate that the proposed architecture outperforms 
existing architectures, achieving high accuracy rates with 
shorter execution times. 

IV. CONCLUSION 

The proposed method presented in this study offers a 
solution to the difficulties of VGG16, which is a very long 
execution time for image classification. The proposed 

architecture improves the network's efficiency and 
classification accuracy by reducing the number of layers and 
adding B.N. layers in feature extraction after every pooling 
layer. Moreover, using a GAP layer in the classifier followed 
by additional dense layers and dropout layers has reduced 
memory consumption, enhanced the network's robustness, 
and improved. 

Based on the evaluation of six public datasets from Kaggle, 
the study's results demonstrate that the proposed architecture 
significantly reduces execution time while achieving better 
classification accuracy compared to three other existing 
architectures despite having fewer parameters. These findings 
suggest that the proposed architecture could be a promising 
solution for better image classification in practical 
applications. 

Future research could expand on this study's findings by 
developing a web application that integrates the proposed 
model for classifying new images that are not included in the 
dataset. Such an application would provide researchers with a 
practical tool to improve image classification accuracy with 
less manual work, ultimately contributing to developing more 
efficient and effective image classification methods. 

Furthermore, while the proposed architecture showed 
promising results in reducing parameters and improving 
classification performance, more investigation is needed to 
understand fully how these changes affect accuracy. 
Additionally, the study focused on image classification, and 
there's room to explore how the proposed architecture could 
be applied to other tasks like object detection or segmentation. 
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