
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Improved Image Classification Task Using Enhanced Visual Geometry
Group of Convolution Neural Networks

Nurzarinah Zakaria a, Yana Mazwin Mohmad Hassim a,*
a Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

Corresponding author: *yana@uthm.edu.my

Abstract— Convolutional Neural Networks (CNNs) have become essential to solving image classification tasks. One of the most frequent

models of CNNs for image classification is the Visual Geometry Group (VGG). The VGG architecture is made up of multiple layers of

convolution and pooling processes followed by fully connected layers. Among the various VGG models, the VGG16 architecture has

gained great attention due to its remarkable performance and simplicity. However, the VGG16 architecture is still prone to have many

parameters contributing to its complexity. Moreover, the complexity of VGG16 may cause a longer execution time. The complexity of

VGG16 architecture is also more highly prone to overfitting and may affect the classification accuracy. This study proposes an

enhancement of VGG16 architecture to overcome such drawbacks. The enhancement involved the reduction of the convolution blocks,

implementing batch normalization (B.N.) layers, and integrating global average pooling (GAP) layers with the addition of dense and

dropout layers in the architecture. The experiment was carried out with six benchmark datasets for image classification tasks. The

results from the experiment show that the network parameters are 79% less complex than the standard VGG16. The proposed model

also yields better classification accuracy and shorter execution time. Reducing the parameters in the proposed improved VGG

architecture allows for more efficient computation and memory usage. Overall, the proposed improved VGG architecture offers a

promising solution to the challenges of long execution times and excessive memory usage in VGG16 architecture.

Keywords— Convolutional neural networks; computer vision; deep learning; image classification; Visual Geometry Group.

Manuscript received 16 Apr. 2023; revised 24 Jul. 2023; accepted 14 Sep. 2023. Date of publication 31 Dec. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Image classification is one of the applications in machine
learning, aiming to develop algorithms that can recognize and
classify the content of an image with near human-level
accuracy. The recent years have witnessed significant
improvements in the use of advanced machine learning
techniques, namely deep learning, for image classification
[1],[2]. Deep learning techniques, notably Convolutional
Neural Networks (CNNs), have revolutionized the vision of a
computer in the field of image classification [3], [4], [5],
making it the most preferred and implemented machine
learning method. Moreover, image classification has
demonstrated outstanding performance employing CNNs to
extract deep representations of training data where it produced
results equal to or better than those produced by humans.

As a deep learning technique, CNNs take an input image
and apply weights and biases to various objects to aid object
recognition [6]. There have been many CNN models up until
this point, including AlexNet [7], DenseNet [8],

GoogleNet/InceptionNet [9], LeNet [10], ResNet [11],
SqueezeNet [12], Visual Geometry Group (VGG) [13],
Xception [14] and ZFNet [15]. Among the various CNNs, the
VGG architecture stands out for its simplicity and efficacy in
image classification tasks. The VGG16 network has
demonstrated state-of-the-art results in various computer
vision applications, including object recognition [16], image
classification [17], and image retrieval [18].

The VGG16, one of the VGG networks, is a deep neural
network architecture that concludes with 16 layers. It was
introduced in 2014, and cutting-edge results in image
classification tasks were obtained[13]. The network
architecture comprises 13 convolution layers stacked with
three fully connected layers. The convolution layers use small
filters of size 3 x 3. Despite its success, the VGG architecture's
deep and parameter-heavy design addresses challenges in
practical implementations, especially for real-time
applications and resource-constrained devices. A larger
parameter size results in a longer execution time and produces
more memory usage, leading to limited scalability [19]. To

2498

JOIV : Int. J. Inform. Visualization, 7(4) - December 2023 2498-2505

address this drawback, this study focuses on reducing the
VGG parameter while maintaining its high accuracy. The
proposed method involves downsizing the VGG architecture
by reducing the parameters, aiming to make the model more
compact and efficient. The ultimate objective is to strike a
balance between execution time and accuracy, thereby
enhancing the reliability and applicability of VGG in real-
world scenarios.

By achieving a downsized VGG architecture, the proposed
method can provide better image classification performance
than other existing VGG architectures with faster execution
times. The need to improve the reliability of VGG in practical
applications motivates this research, where speed and
efficiency are critical factors.

II. MATERIALS AND METHOD

This study aims to provide an improved VGG architecture
for image classification by downsizing the network and
training it on six image datasets. The proposed method
contains two convolution blocks with a pooling and batch
normalization (B.N.) layer in each block. To ensure linearity,
the ReLu activation function is used during training [20].
Following that, the global average pooling (GAP) layer, three
dense layers with SoftMax activation function and dropout of
0.2, 0.4, and 0.6, respectively, were used to analyze the
images.

Furthermore, the B.N. layer has been put together to
normalize the output of previous layers in order to address the
issue of randomly changed minibatch samples that could
result in gradients exploding or disappearing [21] during the
feature extraction. Next, the GAP layer will be employed for
the classifier rather than the flatten layer to minimize the
number of parameters that cause a longer execution time and
may lead to overfitting [21]. Moreover, instead of using two
dense layers from the standard VGG16, three layers will be
implemented because by adding extra layers to the dense part,
the network's efficacy can be strengthened, and the accuracy
can be increased [22].

Finally, dropout layers will be placed after each dense layer
to reduce the complexity and avoid overfitting, which can
reduce network performance [23]. Dropout generates
independent activations by establishing independent random
gates for neurons in a layer [24], which also cuts off the
incoming and outgoing connections to the neurons when the
neurons are turned off. This step is taken to enhance the
learning process of the network. Fig. 1 illustrates the
architecture of the proposed improved VGG.

Fig. 1 The proposed improved VGG architecture

Several steps have been taken to accomplish the study's

goal, including data collecting, architecture development,
implementation, and performance analysis of the

architectures. The method structure is graphically presented
in Fig. 2. The next subsections describe the actions in more
detail.

Fig. 2 The method structure

A. Data Collection

In this research, a comprehensive evaluation was
conducted using six Kaggle image datasets. The datasets were
selected to encompass various image categories, including
brain tumor, cloth, forest, road, Rome weather, and room.
Table 1 provides a detailed overview of each dataset,
including the name, total number of images, and number of
classes. To ensure unbiased training and testing of the
architecture, the entire dataset was randomly split into two
divisions: the training set and the testing set. The amount of
80% of the whole dataset was used for training purposes,
while the other 20% remaining amount of the dataset has been
utilized for testing the architecture.

TABLE I

DATASET DETAILS

No
Image Datasets

Name Total Images No. of Classes

1 Brain Tumor 171 2
2 Cloth 398 2
3 Forest 166 2
4 Road 669 2
5 Rome Weather 250 5
6 Room 192 2

The selection of the brain tumor, cloth, forest, road, Rome

weather, and room datasets in the experiment reflects various
domains and classification tasks, spanning medical imaging,
fashion, environmental monitoring, road infrastructure,
weather, and room conditions. While some datasets have
multiple classes and others have two classifications, the
choice comprehensively evaluates the proposed architecture's
performance across various real-world applications.
Including different domains and classifications, complexities
can impact the results, requiring specific considerations in
model design and evaluation metrics. Overall, this diverse
dataset selection enables insights into the architecture's

2499

effectiveness and its potential application in multiple
domains.

B. Process of Developing the Proposed Method

The VGG model is employed for image classification in
CNNs due to its high accuracy [25], [26]. However, the
drawback of VGG model is its large number of parameters,
which can cause slower execution times. Additionally, the
abundance of parameters requires a longer training duration,
and the broader model is more susceptible to overfitting,
which can impact classification accuracy [27]. To evaluate the
efficacy and reliability of the proposed method, we compared
the evaluation results with other existing architectures,
namely VGG16 [13], VGG16 2021 [22] and VGG 2020 [21].
This stage determines if the proposed architecture could
outperform or match the performance of the existing
architecture.

To facilitate the comparison, this study included a table
containing the details of the compared architectures. Table 2
includes three columns: the key used to address the article
reviewed, the reference source, and the name of the model
developed by the authors. By comparing the proposed
method's performance with existing architectures, this study
aimed to demonstrate its superiority and ability to be applied
in actual circumstances. This comparative analysis also

provides insights into the strengths and weaknesses of each
architecture, which could inform future research in the field.

TABLE II

THE DETAILS OF THE ARCHITECTURE

Key Reference Method

A1 Simonyan & Zisserman [13] VGG16
A2 Islam et al., [22] VGG16 2021
A3 Zhongqin Bi et al., [21] VGG 2020

VGG16 is a type of architecture within CNNs, proposed in

2013 and refined based on the 2014 ImageNet Challenge.
VGG16 differs from earlier models like AlexNet and ZFNet
by using smaller 3x3 receptive fields with a stride of one pixel
for the whole network, as opposed to larger fields used in
previous models. VGG16 has five sets of convolutional layers
and three fully connected layers and employs max pooling to
reduce dimensionality [28]. It uses three fully connected
layers after the convolutional layers, the first two with 4096
neurons and the last with 1000 neurons corresponding to
ImageNet classes. The SoftMax activation layer is placed
after the output layer for classification [29]. Next, VGG16
2021 has improved standard VGG16 by removal of several
layers, particularly after the first 3 x 3 layer in the fifth
convolutional block, as depicted in Fig. 3.

Fig. 3 The comparison of the architecture

2500

To enhance robustness and classification accuracy, new
dense layers were introduced in the fully connected block,
consisting of three layers with units of 1,024, 512, and 288.
Dropout layers were added after each dense layer to prevent
overfitting, with dropout rates of 0.2, 0.4, and 0.6,
respectively. The first layers until the fourth convolutional
block were frozen during training. Furthermore, VGG16 2020
retains the first three blocks of VGG16 while removing a
convolution layer from the third block. To counter gradient
issues during training, a B.N. layer is introduced to normalize
input maps for improved stability. The standard VGG16
includes two dense layers with 4096 units each, leading to
complexity and slower execution. In contrast, the VGG16
2020 replaces these with a GAP layer, addressing parameter
count and computation speed.

Finally, the proposed architecture combines VGG16 2021
and VGG16 2020 to simplify the complexity and
computational requirements of the standard VGG16. In
comparison to VGG16, VGG16 2021, and VGG16 2020 with
139 590 725, 134 281 029, 113 430 533 and 1 148 485
parameters respectively, the new architecture reduces
parameters to 1 067 013. This results in faster execution due
to a GAP layer replacing the flattened layer. Minimizing
convolution blocks is crucial to prevent overfitting and
maintain classification accuracy [27].

The standard VGG16, VGG16 2021, VGG16 2020, and the
proposed architecture are varied in terms of parameters and
computational efficiency. The standard VGG16 has larger
parameters, potentially slowing down the execution time and
demanding more resources [19], [21]. VGG16 2021 and
VGG16 2020 introduce modifications to improve these
aspects. Adopting the features of VGG16 2021 and VGG16
2020, the proposed architecture strives to reduce parameters,
shorten the execution time, and enhance the accuracy of its
applicability in real-world scenarios.

Fig. 3 is a visualization illustrating the network developed
in VGG16, VGG16 2021, VGG16 2020, and the proposed
method. It is likely a diagram that depicts the flow of data
through the neural network, including the types of layers used,
the number of filters used in each layer, and the connections
between them. The input size of an architecture refers to the
dimensions of the image that it can accept as input. In this
case, all the architectures mentioned above have the same
input size, which is 224 for height and 224 for width, with a
depth of 3 representing the three-color channels (red, green,
and blue) of the RGB image.

This research was conducted with specific hardware and
software configurations. The training process was executed
on a computer with M1 chip, 8-core GPU, 8-core CPU, and
16-core Neural Engine. The computer was equipped with 16
G.B. of RAM, and the programming language used for
writing the code was Python. Jupyter Notebook was the
platform for developing and executing the code, while
TensorFlow was the deep learning framework employed for
the experiment. The number of epochs set for the training
process was 100.

C. Implementation of the Proposed Architecture

The third stage of the research involves the implementation
of the proposed architecture. The expected outcome is to
reduce the complexity of the standard VGG16 architecture.

The comparison between the overall architecture of the
standard VGG16 and the proposed improved VGG can be
visualized side-by-side in Fig. 4. The proposed architecture is
expected to show better performance in terms of accuracy and
speed. The implementation will be carried out using the same
experimental setup as described in the previous statement.

Fig. 4 The improvement of the VGG16 architecture

Implementing the proposed method involves including

B.N. layers located after every pooling layer during the
feature extraction phase, which is not present in the standard
VGG16 architecture. This modification is expected to
accelerate the training speeds of the architecture [30].
Including B.N. layers during each epoch helps normalize data
distribution and leads to improved convergence speeds while
reducing the tendency of parameter changes caused by varied
data distributions [31]. Fig. 5 shows the network's
improvement in the architecture's first convolution block.

Fig. 5 The first convolution block of the proposed architecture

To address the issue of large memory usage in VGG16, the

proposed architecture adopted a strategy of reducing the
number of convolution blocks. Specifically, the first and

2501

second convolution blocks in the standard VGG16 were
frozen, and the remaining blocks were removed. This led to a
significant reduction in the number of total parameters from
134 268 738 in the standard VGG16 to 1 067 013 in the
proposed architecture. This reduction in parameter count not
only addresses the issue of limited storage capacity in several
computers but also leads to faster execution times. In this
study, the implementation focuses on smaller or simpler
datasets, where a compact model can effectively learn the
relevant features [32], [33]. The improvement of the second
convolution block of the proposed architecture is illustrated
in Fig. 6.

Fig. 6 The second convolution block of the proposed method

In the standard VGG16 architecture, the flattening layer

has a large number of elements in the output of the last
convolution layer after flattening, precisely a vector of size 25
088, which impacts the overall execution time and memory
usage. In order to address this issue, this study utilizes the
GAP layer instead of the flattened layer, as it is parameter-
free, which can possibly significantly decrease the number of
parameters in the architecture [34]. According to a previous
study, utilizing GAP layer has been found to reduce the
number of parameters and computational complexity [35].
Using the GAP layer decreases the vector's size in the layer to
128, which is obtained from the previous layer. Fig. 7
represents the classifier of the standard VGG16 and the
proposed method. The proposed method uses the GAP layer
instead of the flattened layer, which can minimize the number
of parameters and improve the execution time.

Adding extra dense layers can help to analyze more
complicated forms of the input data and increase the model's
capacity to capture high-level features [22]. This can
ultimately lead to better classification performance.
Furthermore, every neuron in each dense layer is typically a
hyperparameter that must be tuned based on the dataset and
the complexity of the task. In this study, the proposed

architecture uses three dense layers with 1024, 512, and 288
neurons to achieve better classification performance
compared to the standard VGG16. Three dense layers give the
model more ability to recognize and learn complex
correlations and patterns in input data [36]. It is worth noting
that adding more layers and increasing the neurons can also
increase the tendency to overfit. Therefore, it is important to
carefully choose the number of layers and neurons and apply
regularization techniques, such as dropout, to prevent
overfitting.

Fig. 7 The classifier of the proposed method

Finally, dropout layers are a regularization technique used

to reduce overfitting in neural networks [20], [37]. Overfitting
is a problem that happens when a model becomes overly
complex to learn the data used for training [38], [39], [40],
[41]. Hence, the overfitting must be reduced in order to lower
the cost of misclassification in the architecture [42]. During
training, the number of neurons in the network is randomly
dropped out or ignored, which forces the network to analyze
more robust and generalizable features. The dropout rate is a
hyperparameter that needs to be tuned based on the specific
problem and dataset. This research added dropout layers with
rates of 0.2, 0.4, and 0.6 after each dense layer.

D. Performance Analysis

Several evaluation metrics have been used to measure and
compare the proposed method's effectiveness with other
architectures. These metrics include the execution time which
measures the time taken for the model to make predictions,
and the classification accuracy, which measures the ability of
the model to classify images into their respective categories
correctly. In order to ensure a fair evaluation of the proposed
method's performance, it is important to evaluate its execution
time on the same platform and in the same state. This is
because varying machine specifications or tool versions could
introduce bias in the feature extraction, and other tasks
running on the CPU could impact the time taken for feature
extraction. In order to ensure consistent evaluation, the
execution time will be measured in hours (h).

The proposed architecture's accuracy will be assessed
using the confusion matrix, a straightforward and
uncomplicated metric for measuring correctness and
accuracy. The confusion matrix is typically employed in
classification problems where the output could belong to two
or more classes. It comprises a two-dimensional table which

2502

is Actual and Predicted with sets of classes in both
dimensions. A diagrammatic representation of the confusion
matrix is displayed in Fig. 8.

Fig. 8 Confusion matrix

In Fig. 8, a confusion matrix is presented to evaluate the

performance of the classification model. In the context of
classification problems, accuracy is a crucial metric that
represents the proportion of correct predictions made by the
model out of all the predictions made. Equation (1) is used to
calculate accuracy, which considers the number of True
Positives (T.P.), True Negatives (T.N.), False Positives (F.P.),
and False Negatives (F.N.).

Accuracy �
TP � TN

TP � FP � FN � TN
 (1)

III. RESULTS AND DISCUSSION

The experimental results of the proposed improved VGG
architecture are presented in this section, including the
evaluation of execution time and classification accuracy on
six different datasets trained on the same platform. These
results are essential to assess the proposed architecture's
effectiveness and determine its potential applications in real-
world scenarios. The Adam optimizer was used during the
training process due to its suitability for handling models with
a large number of parameters [43]. The number of epochs was
set to 100, and the implicit regularization of the model's
greater depth and smaller convolution filter sizes, along with
pre-initialization of certain layers, allowed the networks to
converge in fewer epochs [13].

TABLE III
PERFORMANCE ANALYSIS BASED ON EXECUTION TIME

No. Datasets

Execution Time (h)

A1 A2 A3
Proposed

Method

1
Brain
Tumor

0:17:47 0:17:05 0:09:35 0:06:13

2 Cloth 0:46:05 0:39:07 0:31:35 0:19:27
3 Forest 0:20:59 0:14:44 0:11:36 0:06:56
4 Road 1:21:49 1:11:01 0:43:17 0:26:26

5
Rome
Weather

0:24:07 0:22:50 0:12:39 0:08:36

6 Room 0:25:05 0:21:42 0:12:34 0:09:05

Table 3 is a comparison table that showcases the execution
time performance of the proposed improved VGG
architecture in comparison to three other existing
architectures. The table is used to evaluate the effectiveness
and efficiency of the proposed architecture in terms of its

execution time. Comparing the execution time of the
proposed method with other architectures can help determine
the proposed architecture's potential practical applications
and scalability.

Fig. 9 demonstrates that the proposed architecture's
execution time is shorter for each dataset compared to other
architectures, and this concludes that the execution time is
35.7% faster than the standard VGG16. The reduction in the
number of parameters used in the proposed architecture is the
primary reason for its compact execution, making it faster to
execute than other VGG architectures. A model's speed is
important in real-world applications because it can affect how
quickly the model can provide output. Therefore, the
proposed architecture's faster execution time is a crucial
advantage in practice.

Fig. 9 The execution time (h) obtained based on datasets

Additionally, the compactness of the proposed architecture

can also reduce memory usage, which is beneficial in low-
memory devices. The performance comparison of execution
time in this study aligns with previous works, highlighting the
importance of model size and parameter reduction for
efficient deep-learning models [44]. Next, to validate the
proposed architecture, the accuracy of each dataset was
evaluated as the second metric, a popular metric in multi-class
classification computed from the confusion matrix [45]. The
comparison of the classification accuracy of the proposed
improved VGG architecture with three existing architectures
is shown in Table 4. This evaluation method has been widely
used in various studies to validate the accuracy of deep

learning models [28], [46], [47].

TABLE IV
PERFORMANCE ANALYSIS BASED ON ACCURACY

No. Datasets

Accuracy (%)

A1 A2 A3
Proposed

Method

1 Brain
Tumor

43 43 46 77

2 Cloth 34 58 56 59
3 Forest 56 56 62 82
4 Road 55 55 91 98
5 Rome

Weather
12 12 26 64

6 Room 44 44 54 67

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

Brain

Tumor

Cloth Forest Road Rome

Weather

Room

Execution Time (h)

A1 A2 A3 Proposed Method

2503

The study reveals that the proposed architecture
outperforms other VGG architectures in terms of accuracy. It
is observed that the proposed architecture has a 41.9%
accuracy improvement compared to the standard VGG16.
This is demonstrated in Fig. 10, which shows the comparison
of the proposed architecture with other architectures.

Fig. 10 The accuracy (%) obtained based on datasets.

The proposed method presented in this study reduces

memory usage by decreasing the parameters to 1 066 146,
compared to 134 268 738, 113 429 666, and 1 147 714 in
architectures A1, A2, and A3, respectively. Despite the
parameter reduction, this approach helps reduce network
complexity and computational resources. By replacing the
flattening layer with the GAP layer, the proposed architecture
reduces the number of network parameters, which is 79%
smaller in comparison with the standard VGG16, which
contributes to shorter execution time. Throughout the training
process, the proposed architecture shows better execution
time results than A1, A2, and A3 architectures for all datasets.
The proposed architecture outperforms the existing
architectures for all six datasets for classification accuracy,
achieving higher accuracy rates.

The reduction in the number of parameters in the proposed
improved VGG architecture allows for more efficient
computation and memory usage. The GAP layer replaces the
flatten layer, which significantly impacts the number of
parameters and execution time. These changes contribute to
the proposed architecture's superior performance in terms of
execution time and classification accuracy. Overall, the
proposed improved VGG architecture offers a promising
solution to the challenges of long execution times and
excessive memory usage in VGG16 architecture. The results
demonstrate that the proposed architecture outperforms
existing architectures, achieving high accuracy rates with
shorter execution times.

IV. CONCLUSION

The proposed method presented in this study offers a
solution to the difficulties of VGG16, which is a very long
execution time for image classification. The proposed

architecture improves the network's efficiency and
classification accuracy by reducing the number of layers and
adding B.N. layers in feature extraction after every pooling
layer. Moreover, using a GAP layer in the classifier followed
by additional dense layers and dropout layers has reduced
memory consumption, enhanced the network's robustness,
and improved.

Based on the evaluation of six public datasets from Kaggle,
the study's results demonstrate that the proposed architecture
significantly reduces execution time while achieving better
classification accuracy compared to three other existing
architectures despite having fewer parameters. These findings
suggest that the proposed architecture could be a promising
solution for better image classification in practical
applications.

Future research could expand on this study's findings by
developing a web application that integrates the proposed
model for classifying new images that are not included in the
dataset. Such an application would provide researchers with a
practical tool to improve image classification accuracy with
less manual work, ultimately contributing to developing more
efficient and effective image classification methods.

Furthermore, while the proposed architecture showed
promising results in reducing parameters and improving
classification performance, more investigation is needed to
understand fully how these changes affect accuracy.
Additionally, the study focused on image classification, and
there's room to explore how the proposed architecture could
be applied to other tasks like object detection or segmentation.

ACKNOWLEDGMENT

This research was supported by Ministry of Higher
Education (MOHE) through Fundamental Research Grant
Scheme (FRGS/1/2020/ICT02/UTHM/02/1).

REFERENCES

[1] P. Patel and A. Thakkar, "The upsurge of deep learning for computer
vision applications," International Journal of Electrical and Computer

Engineering, vol. 10, no. 1, 2020, doi: 10.11591/ijece.v10i1.pp538-

548.
[2] K. Joshi, V. Tripathi, C. Bose, and C. Bhardwaj, "Robust Sports Image

Classification Using InceptionV3 and Neural Networks," Procedia

Comput Sci, vol. 167, no. Iccids 2019, pp. 2374–2381, 2020, doi:
10.1016/j.procs.2020.03.290.

[3] M. Mahdianpari, B. Salehi, M. Rezaee, F. Mohammadimanesh, and Y.

Zhang, "Very deep convolutional neural networks for complex land
cover mapping using multispectral remote sensing imagery," Remote

Sens (Basel), vol. 10, no. 7, 2018, doi: 10.3390/rs10071119.

[4] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, "Convolutional
neural networks: an overview and application in radiology," Insights

into Imaging, vol. 9, no. 4. 2018. doi: 10.1007/s13244-018-0639-9.

[5] Y. Wang and Z. Wang, "A survey of recent work on fine-grained
image classification techniques," J Vis Commun Image Represent, vol.
59, 2019, doi: 10.1016/j.jvcir.2018.12.049.

[6] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the
recent architectures of deep convolutional neural networks," Artif

Intell Rev, vol. 53, no. 8, 2020, doi: 10.1007/s10462-020-09825-6.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet
classification with deep convolutional neural networks," Commun

ACM, vol. 60, no. 6, 2017, doi: 10.1145/3065386.

[8] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely
connected convolutional networks," in Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR

2017, 2017. doi: 10.1109/CVPR.2017.243.
[9] C. Szegedy et al., "Going deeper with convolutions," in Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2015. doi: 10.1109/CVPR.2015.7298594.

0

10

20

30

40

50

60

70

80

90

100

Brain
Tumor

Cloth Forest Road Rome
Weather

Room

Accuracy (%)

A1 A2 A3 Proposed Method

2504

[10] Y. Lecun, E. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based

Learning Applied to Document Recognition," 1998.
[11] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, IEEE
Computer Society, Dec. 2016, pp. 770–778.
doi:10.1109/CVPR.2016.90.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size," Feb. 2016, [Online]. Available:

http://arxiv.org/abs/1602.07360
[13] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks

for Large-Scale Image Recognition," 3rd International Conference on

Learning Representations, ICLR 2015 - Conference Track

Proceedings, pp. 1–14, Sep. 2014, [Online]. Available:
http://arxiv.org/abs/1409.1556

[14] F. Chollet, "Xception: Deep learning with depthwise separable
convolutions," in Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, 2017.

doi:10.1109/CVPR.2017.195.
[15] M. D. Zeiler and R. Fergus, "Visualizing and understanding

convolutional networks," in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2014. doi: 10.1007/978-3-319-
10590-1_53.

[16] Z. Song, L. Fu, J. Wu, Z. Liu, R. Li, and Y. Cui, "Kiwifruit detection
in field images using Faster R-CNN with VGG16," in IFAC-

PapersOnLine, Elsevier B.V., 2019, pp. 76–81.

doi:10.1016/j.ifacol.2019.12.500.
[17] P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, "Fish species

recognition using VGG16 deep convolutional neural network,"

Journal of Computing Science and Engineering, vol. 13, no. 3, pp.
124–130, 2019, doi: 10.5626/JCSE.2019.13.3.124.

[18] S. Theetchenya, S. Ramasubbareddy, S. Sankar, and S. M. Basha,

"Hybrid approach for content-based image retrieval," International

Journal of Data Science, vol. 6, no. 1. p. 45, 2021.
doi:10.1504/ijds.2021.117467.

[19] S. S. Sawant et al., "An optimal-score-based filter pruning for deep
convolutional neural networks," Applied Intelligence, vol. 52, no. 15,
2022, doi: 10.1007/s10489-022-03229-5.

[20] I. Singh Walia, M. Srivastava, D. Kumar, M. Rani, P. Muthreja, and
G. Mohadikar, "Pneumonia Detection using Depth-Wise
Convolutional Neural Network (DW-CNN)," 2020, doi: 10.4108/.

[21] Zhongqin Bi, Ling Yu, Honghao Gao, Ping Zhou, and Hongyang Yao,
"Improved VGG model-based efcient trafc sign recognition for safe
driving in 5G scenarios.pdf." 2020.

[22] M. N. Islam et al., "Diagnosis of hearing deficiency using EEG based
AEP signals: CWT and improved-VGG16 pipeline," PeerJ Comput

Sci, vol. 7, p. e638, 2021, doi: 10.7717/peerj-cs.638.

[23] A. Labach, H. Salehinejad, and S. Valaee, "Survey of Dropout
Methods for Deep Neural Networks," Apr. 2019, [Online]. Available:
http://arxiv.org/abs/1904.13310

[24] G. Chen, P. Chen, Y. Shi, C.-Y. Hsieh, B. Liao, and S. Zhang,
"Rethinking the Usage of Batch Normalization and Dropout in the
Training of Deep Neural Networks," May 2019, [Online]. Available:

http://arxiv.org/abs/1905.05928
[25] D. Serdyuk, O. Braga, and O. Siohan, "Audio-Visual Speech

Recognition is Worth $32\times 32\times 8$ Voxels," in 2021 IEEE

Automatic Speech Recognition and Understanding Workshop, ASRU

2021 - Proceedings, 2021. doi: 10.1109/ASRU51503.2021.9688191.
[26] Y. Zhou, H. Chang, Y. Lu, X. Lu, and R. Zhou, "Improving the

Performance of VGG through Different Granularity Feature
Combinations," IEEE Access, vol. 9, 2021,
doi:10.1109/ACCESS.2020.3031908.

[27] F. Pasa, V. Golkov, F. Pfeiffer, D. Cremers, and D. Pfeiffer, "Efficient
Deep Network Architectures for Fast Chest X-Ray Tuberculosis
Screening and Visualization," Sci Rep, vol. 9, no. 1, Dec. 2019,
doi:10.1038/s41598-019-42557-4.

[28] M. Mateen, J. Wen, Nasrullah, S. Song, and Z. Huang, "Fundus image
classification using VGG-19 architecture with PCA and SVD,"
Symmetry (Basel), vol. 11, no. 1, Jan. 2019,

doi:10.3390/sym11010001.

[29] F. Zhao, B. Zhang, Z. Zhang, X. Zhang, and C. Wei, "Classification

and detection method of Blood lancet based on VGG16 network,"
2021 IEEE International Conference on Mechatronics and

Automation, ICMA 2021, pp. 849–853, 2021,

doi:10.1109/ICMA52036.2021.9512686.
[30] H. Yang, J. Ni, J. Gao, Z. Han, and T. Luan, "A novel method for

peanut variety identification and classification by Improved VGG16,"

Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-95240-y.
[31] Q. Yan, B. Yang, W. Wang, B. Wang, P. Chen, and J. Zhang, "Apple

leaf diseases recognition based on an improved convolutional neural

network," Sensors (Switzerland), vol. 20, no. 12, pp. 1–14, 2020,
doi:10.3390/s20123535.

[32] X. Li et al., "Multi-Modal Multi-Instance Learning for Retinal Disease

Recognition," in MM 2021 - Proceedings of the 29th ACM

International Conference on Multimedia, 2021.
doi:10.1145/3474085.3475418.

[33] B. Cui, X. M. Dong, Q. Zhan, J. Peng, and W. Sun,
"LiteDepthwiseNet: A Lightweight Network for Hyperspectral Image
Classification," IEEE Transactions on Geoscience and Remote

Sensing, vol. 60, 2022, doi: 10.1109/TGRS.2021.3062372.
[34] E. Ovalle-Magallanes, N. G. Aldana-Murillo, J. G. Avina-Cervantes,

J. Ruiz-Pinales, J. Cepeda-Negrete, and S. Ledesma, “Transfer

Learning for Humanoid Robot Appearance-Based Localization in a
Visual Map,” IEEE Access, vol. 9, pp. 6868–6877, 2021,
doi:10.1109/ACCESS.2020.3048936.

[35] M. Lin, Q. Chen, and S. Yan, "Network In Network," Dec. 2013,
[Online]. Available: http://arxiv.org/abs/1312.4400.

[36] P. P. Das, A. Acharjee, and Marium-E-Jannat, "Double coated VGG16

architecture: An enhanced approach for genre classification of
spectrographic representation of musical pieces," in 2019 22nd

International Conference on Computer and Information Technology,

ICCIT 2019, 2019. doi: 10.1109/ICCIT48885.2019.9038339.
[37] H. P. A. Tjahyaningtijas, A. K. Nugroho, C. V. Angkoso, I. K. E.

Purnama, and M. H. Purnomo, "Automatic Segmentation on

Glioblastoma Brain Tumor Magnetic Resonance Imaging Using
Modified U-Net," EMITTER International Journal of Engineering

Technology, vol. 8, no. 1, pp. 161–177, Jun. 2020,

doi:10.24003/emitter.v8i1.505.
[38] M. M. Bejani and M. Ghatee, "A systematic review on overfitting

control in shallow and deep neural networks," Artif Intell Rev, vol. 54,

no. 8, 2021, doi: 10.1007/s10462-021-09975-1.
[39] T. D1Etterich, "Overfitting and Undercomputing in Machine

Learning," ACM Computing Surveys (CSUR), vol. 27, no. 3, 1995,

doi:10.1145/212094.212114.
[40] S. J. Nowlan and G. E. Hinton, "Simplifying neural networks by soft

weight sharing," in The Mathematics Of Generalization, 2018.

doi:10.1162/neco.1992.4.4.473.
[41] D. M. Hawkins, "The Problem of Overfitting," Journal of Chemical

Information and Computer Sciences, vol. 44, no. 1. 2004.

doi:10.1021/ci0342472.
[42] H. N. A. Pham and E. Triantaphyllou, "The impact of overfitting and

overgeneralization on the classification accuracy in data mining," in

Soft Computing for Knowledge Discovery and Data Mining, 2008.
doi:10.1007/978-0-387-69935-6_16.

[43] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic

Optimization," Dec. 2014, [Online]. Available:
http://arxiv.org/abs/1412.6980

[44] M. Tan and Q. V. Le, "EfficientNet: Rethinking model scaling for

convolutional neural networks," in 36th International Conference on

Machine Learning, ICML 2019, 2019.
[45] M. Grandini, E. Bagli, and G. Visani, "Metrics for Multi-Class

Classification: an Overview," Aug. 2020, [Online]. Available:
http://arxiv.org/abs/2008.05756.

[46] M. Shu, "Deep Learning for Image Classification on Very Small

Datasets Using Transfer Learning," 2019.
[47] K. S. Lee, S. K. Jung, J. J. Ryu, S. W. Shin, and J. Choi, "Evaluation

of transfer learning with deep convolutional neural networks for
screening osteoporosis in dental panoramic radiographs," J Clin Med,

vol. 9, no. 2, Feb. 2020, doi: 10.3390/jcm9020392.

2505

