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Abstract— This research concerns the common problem of edge detection that produces a disjointed and incomplete edge, leading to 

the misdetection of visual objects. The entropy-based algorithm can potentially solve this problem by classifying the pixel belonging to 

which objects in an image. Hence, the paper aims to evaluate the performance of entropy-based algorithm to produce the closed-loop 

edge representing the formation of object boundary. The research utilizes the concept of Entropy to sense the uncertainty of pixel 

membership to the existing objects to classify pixels as the edge or object. Six entropy-based algorithms are evaluated, i.e., the optimum 

Entropy based on Shannon formula, the optimum of relative-entropy based on Kullback-Leibler divergence, the maximum of optimum 

entropy neighbor, the minimum of optimum relative-entropy neighbor, the thinning of optimum entropy neighbor, and the thinning of 

optimum relative-entropy neighbor. The experiment is held to compare the developed algorithms against Canny as a benchmark by 

employing five performance parameters, i.e., the average number of detected objects, the average number of detected edge pixels, the 

average size of detected objects, the ratio of the number of edge pixel per object, and the average of ten biggest sizes. The experiment 

shows that the entropy-based algorithms significantly improve the production of closed-loop edges, and the optimum of relative-entropy 

neighbor based on Kullback-Leibler divergence becomes the most desired approach among others due to the production of more 

considerable closed-loop edge in the average. This finding suggests that the entropy-based algorithm is the best choice for edge-based 

segmentation. The effectiveness of Entropy in the segmentation task is addressed for further research.  

Keywords— Entropy; relative-entropy; edge detection; optimal edge; closed-loop edge; edge detector evaluation. 

Manuscript received 30 Mar. 2023; revised 22 Aug. 2023; accepted 8 Sep. 2023. Date of publication 31 Dec. 2023. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The canny operator has widely been admitted being the 
most powerful and popular method for edge detection [1], [2]. 
Despite its recognizable performance, Lelore and Bouchara 
[3] note that the Canny operator tends to produce disjointed
contours. This problem is also suffered by almost all edge
detector algorithms that range from the classical technique
[4], the optimized approach [2], [5]–[9], to even the advanced
methods [10]–[14]. It causes difficulty in automatically
recognizing and analyzing the content of digital images, as
demonstrated by Figure 1. Here, the Canny edge detector is
applied to the input image in Figure 1a, which produces the
edge map in Figure 1b. Then, an automatic edge-based
segmentation is applied to the edge map in Figure 1b to
extract the shape of objects. The result is poor image content,
as shown in Figure 1f. The open-loop edges caused that to
exist in the edge map. Even after tuning the algorithm with
various threshold parameters, as shown in Figure 1c-e, it is

still difficult to generate the edge as a closed-loop boundary 
of the objects, as shown in Figure 1c-e, respectively. Hence, 
the edge-based segmentation produces many missing objects, 
as shown in Figure 1g-i, although the objects are tangible to 
human subjects, as shown in Figure 1a. A similar approach to 
optimize edge detection by threshold parameter selection had 
actually been afforded by some researchers that produced 
insignificant results [10]. Therefore, it is essential to define an 
optimal edge as a closed-loop boundary of the object that 
needs to be achieved by every edge detector. Unlike edge 
detection algorithms, normal human vision is superior to 
achieving the optimal edge from every object, even in varied 
and complicated scenes. Of course, it is essential not to 
confuse the concept of edge as a boundary of the object with 
the concept of ridge as a raised line on a flat surface.  

Meanwhile, the concept of entropy to measure the 
uncertainty of an event has the potential to facilitate a 
complete detection of edge and, therefore, solve the above 
problem. Date back to the work of Shiozaki [15] that 
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introduced the entropy operator to detect the edge from a 
digital image, and later was followed by Barba et al. [16] to 
employ the entropy measurement in a set of cytological 
images, the result was promising even though it was hard to 
mention that the product was an edge since what they 
produced was merely the entropy measures from the content 
of a digital image. Varied approaches based on Entropy were 
introduced afterward, such as Hrzic et al. [17] to threshold the 
product of local Entropy with the standard deviation of pixel 
distribution in a windowing scheme, Sert and Derya [18] to 
employ maximum norm entropy, and Aroza et al. [19] to 
develop cluster entropy as edge detector.  

However, less attention has been paid to achieving the 
optimal edge defined as a complete closed-loop boundary of 
the object. Hence, it is necessary to extend the progress made 
by the edge detection community, particularly to deliver a 
complete closed-loop edge as the product of edge detection to 
retrieve the image's content completely. This research aims to 
deliver the extended progress of entropy-based algorithms to 
achieve the closed-loop edge by evaluating the performance 
of the entropy-based edge detection family and their 
enhancement in retrieving the object boundary represented by 
the optimal edge as defined above. 
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Fig. 1  Edge map generated by Canny for various threshold setting: (a) input 
image, (b) T1=0.05 & T2=0.125, (c) T1=0.01 & T2=0.05, (d) T1=0.01 & 
T2=0.02, (e) T1=0.001 & T2=0.002, (f) (g) (h) and (i) the closed-loop edge 
obtained from b, c, d, and e respectively. 

 
The rest of this paper is organized as follows. Section 2 

discusses the approach to optimizing the entropy operator for 
edge detection rooted in the information-theoretic entropy and 
the relative entropy. The enhancement of each operator by 
employing the maximization and minimization approach and 
further enhancement by applying the thinning algorithm to the 
entropy map, are presented in this section. Section 3 presents 
the experiment to measure each algorithm's performance by 
comparing it against the benchmark of edge detection based 
on a set of predefined experimental parameters. The analysis 

of experimental results is presented in this section. The work 
is concluded in Section 4. 

II. MATERIALS AND METHODS 

A. The entropy-based edge detector 

The concept of Entropy [20], also known as information 
theoretic entropy [21], is the measurement of system 
uncertainty that is computed by 

 � = − ∑ �� ln �� (1) 

where �� is the probability of i-th energy state of the system. 
Equation 1 produces a concave function such as shown by 
Figure 2, in which the following condition achieves the peak 
of the function. 

 �	 = �
 = ⋯ = �� (2) 

 
Fig. 2  Entropy as a concave function 

 
Equation 2 describes the achievement of maximum 

uncertainty of an event when it is viewed from the probability 
of its constituent components. In this case, the condition 
fulfilled by Equation 2 presents a transition state from an 
event to other that is acknowledged by a transient point where 
the uncertainty is maximum. This concept is perfectly 
matched to edge detection in image analysis. Here, the 
existence of edge is acknowledged from the transition of pixel 
membership to an object. For the case that more than an 
objects exists, the pixel membership of an object gradually 
changes from high to low, as indicated by the entropy 
measure.  

In this case, the existence of an edge is considered an event 
influenced by the uncertainty of pixel membership to the 
existing objects. The edge pixel exists when the pixel 
membership changes between objects, or where maximum 
uncertainty tends to take place. Hence, the algorithm needs to 
facilitate the achievement of maximum uncertainty. Here, we 
argue that minimizing the number of events tends to achieve 
maximum uncertainty. Considering the condition where a set 
of events 
	 ⋯ 
� with the corresponding probability �	 ⋯ �� in which ∑ �� = 1, the maximum uncertainty is 
achieved by fulfilling Equation 2. Here, the maximum 
uncertainty is a condition among other possible alternatives 
listed as follows ��	 > �
 > ⋯ > �� , �	 > �
 > ⋯ >���	 = �� , ⋯ , �	 > �
 > ⋯ > ���	 = ���. The total 
number of possible alternatives is 
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 ∑ 
 = �� − 1��! + 1 (3) 

Hence, the probability to obtain the maximum uncertainty 
of event A in Equation 3 is described by 

 �� = 	���	��!�	 (4) 

Based on Equation 4, minimizing N becomes the only 
solution to improve the probability of obtaining maximum 
uncertainty of event A. Therefore, it suggests focusing on 
optimizing the Entropy by computing the number of classes 
that represent the objects composing an image. This 
computation influences the sensitivity of Entropy to detect the 
edge from the pixel structure. In this research, the entropy 
optimization is computed as follows. For any predefined 
window W in an image I, with � ⊂ �, the Entropy is 
developed by minimizing the maximum Entropy of W, in 
which the maximum Entropy is obtained by developing N 
number of classes �	 ⋯ �� that share equal class probability 
as defined by Equation. This condition employs the 
assumption that all pixels are distributed equally to all classes. 
Hence,  

 �	 ⋯ �� ⊂ �  (5) 

for � > 1 with the probability of each class is computed on 
each window as follows  

 �� = | !||"| (6) 

Therefore, the Entropy of each window H can be computed 
by using Equation 1 to develop the entropy map. In this case, 
H is maximum when Equation 2 is fulfilled, i.e., �� = 1 �⁄  
for $ = 1 ⋯ �, hence.  

 �%�& = − ln 	� (7) 

The result in Equation 7 has previously been described by 
Kapur and Kesavan [21]. Graphing H for � > 1 shows the 
behavior of a concave-like function, as given in Figure 3. 
Meanwhile, we can rewrite Equation 5 to become � ='��, �� since � = |�| |�|⁄  for $ = 1 ⋯ �. Since we know 
that |�| is a predefined constant, here we assume that |�| =1, hence. 

 � = 	| | (8) 

Based on Equation 8, we argue that minimizing the 
maximum Entropy becomes the foundation to perceive any 
object's existence in an image. 

 �()* = min� �%�& (9) 

By inserting Equation 7 and 8 into Equation 9 to obtain �()* in terms of N and c, we obtain the following results. 

 �()* ≅ ./0� |�| ≅ .$1� � (10) 

What we find in Equation 10 for OPTH  is consistent with 

Equation 4 and fulfils the graph behavior of MAXH  in Figure 

3. Therefore, it is necessary to minimize N  in order to reach 

OPTH . Solving N  for Equation 10 delivers the following 

solution. 

 � = 2 2 $' |�| ∈ 5651|�| $' |�| ∈ �7$.5.$1� |"|| | $' |�| ∈ 899&¬�7$.5  (11) 

Proof: For any |�| that is even, N=2 become the least 
divisor to divide W into least number of classes having equal 
probability, since even number is always completely divided 
by 2. While for any |�| that is prime, there is no divisor to 
completely divide prime number except 1 and its own 
number. However N=1 violates Equation 5. Thus, the only 
solution is � = |�|. For any |�| that is odd and not prime, 
then |�| = �|�|. It means N and |�| becomes the factor of |�|, therefore solving N needs to simultaneously solving |�|. 
Since we need to minimize N and at the same time 
maximizing |�| to fulfil Equation 12, it is necessary to have � ≤ |�|, thus � = min� |"|| |  with |�|%|�| = 0. Therefore, it 

yields � ∈ �7$.5 since any non-prime number greater than 
one will always have its factor to violate the minimization 
principle.  

 

Fig. 3  Behavior of �%�& for � > 1 

 
Equation 10 and 11 becomes the foundation of optimum 

Entropy (OE) to detect the edge of objects in an image. The 
result of applying OE to image in Figure 1a is given in Figure 
4a. Following the definition of edge as the boundary between 
adjacent objects or between an object and its background, and 
the importance to achieve the optimal edge as a closed-loop 
boundary of an object, the application of OE delivers 
significant advantage to detect and achieve the optimal edge 
due to twofold. Firstly, the capability of Entropy to measure 
the uncertainty of a pixel belonging to a certain object based 
on the condition of its surroundings. Secondly, the condition 
of the neighboring pixels in an image that generally carry 
similar values from an object, but experience gradual changes 
to move between adjacent objects.  

In this case, the small changes of pixel values would 
generate the variation of the Entropy. It is worth noting that 
higher Entropy leads to the existence of more than an object, 
and due to OE, the number of available objects have 
significantly been reduced to a minimum as the target of pixel 
grouping. Let the entropy map is generated by OE from an 
image I, an edge map E  is obtained by optimizing the entropy 
map based on the maximum of optimum entropy neighbor 
(MOE) computed by the following equation. 
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 ?�$, @� = A1 $' ��$, @� ≥ �CD�EF0 $' ��$, @� < �CD�EF (12) 

Equation 12 shows that the Entropy of each pixel is 
compared against its neighbors in all directions to identify the 
existence of edge or non-edge, which is represented by 1 and 
0, respectively. The application of MOE in Equation 12 to the 
entropy map in Figure 4a delivers the result shown in Figure 
4b. Some thick edges appear in Figure 4b due to the existence 
of some groups of maximum Entropy. Therefore, it is 
necessary to run an edge thinning algorithm to produce the 
thinning of a maximum of optimum entropy neighbor 
(TMOE) as the final edge map that contains the closed-loop 
boundary of objects with a minimum pixel width as shown in 
Figure 4c. 

 

   
(a) (b) (c) 

Fig. 4  Edge map produced by (a) OE (b) MOE (c) TMOE 

B. The relative-entropy-based edge detector 

A relative entropy [22] is a measure of relative information 
between two probabilities p and q as computed by 

 � = ∑ �� ln H!I! (13) 

Plotting relative Entropy in Equation 13 for J = 1 − � 
produces a convex function as shown by Figure 5.  

 

Fig. 5  Relative-entropy as a convex function 

 
It shows that relative Entropy has the opposite behavior to 

Entropysince it behaves as a convex function as opposed to 
the Entropy that generates a concave function in Figure 2. 
Therefore, we need to reverse the operator by minimizing the 
maximum entropy optimization to obtain the optimum edge 
detection. The strategy of relative entropy optimization is 
given as follows.  

For any predefined window W in a digital image I with � ⊂ �, the relative entropy optimization is achieved by 
maximizing the minimum relative Entropy of W, in which the 
minimum relative Entropy is obtained by developing N 
number of classes �	 ⋯ �� that share equal class probability 

�	 ⋯ �� given all pixels distributed equally to all classes. 
Based on Equation 2, �� = 1 �⁄ , hence 

 �%K� = ln 	��	 (14) 

Proof:  �%K� =  min� M �� ln ��J� = M 1� ln 1 �⁄1 − 1 �⁄  

= ln 1� − 1 

 
Graphing �%K� in Equation 14 for � > 1 delivers a convex-
like function as shown by Figure 6. 

 
Fig. 6  Behavior of �%K�  for � > 1 

 
By employing the opposite entropy optimization principle 

as defined by Equation 9, the optimum of relative Entropy 
(OR) is computed by maximizing �%K�, hence. 

 �()* ≅ min� � (15) 

OR in Equation 15 delivers the same information as OE in 
Equation 9. Hence, minimizing the number of classes 
representing the number of objects becomes the foundation of 
optimizing Entropy and relative Entropy. Since we deal with 
a convex function as the main characteristic of relative 
Entropy, we employ the minimum of optimum relative 
entropy neighbors (MOR) to detect the object edge as given 
by 

 ?�$, @� = A1 $' ��$, @� ≤ �CD�EF0 $' ��$, @� > �CD�EF (16) 

Applying OR in Equation 15 to an input image in Figure 
1a and applying MOR in Equation 16 to the result of OR 
deliver the results as shown by Figure 7a and 7b, respectively. 
Figure 7a shows some thick edges due to the gradual changes 
of relative Entropy from high value to the low value and back 
to high value again. In this picture, the objects are represented 
by high value or white color. The application of MOR is able 
to reduce the thickness of edge as shown by Figure 7b even 
though it is insignificant to influence the object size. 
Significant reduction of edge is recorded by inserting the 
output of MOR in Figure 7b to a thinning algorithm that 
produces the thinning of maximum relative entropy neighbors 
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(TMOR), in which the result is shown in Figure 7c. Here, 
TMOR produces a set of closed-loop edges that have a pixel 
width. 

 

    
(a) (b) (c) 

Fig. 7  Edge map produced by (A) OR (B) MOR (C) TMOR 

 

III. RESULT AND DISCUSSION 

The experiment is based on empirical evaluation [23], to 
measure the performance of entropy-based algorithms to 
support the automatic segmentation to localize the image 
content as a set of regions. It utilizes the dataset of knee 
images obtained from Knoll et al. [24]. The experimental 
results in segmented regions are derived from the automatic 
segmentation algorithm [25]–[27] after being supplied by the 
output of the developed approaches above, i.e., OE, MOE, 
TMOE, OR, MOR, and TMOR. We also compare the output 
of the developed algorithms against Canny algorithm as the 
benchmark of the edge detector. The sample of experimental 
results is shown in Figure 8.  

 

Input 

     

Canny 

     

OE 

     

MOE 

     

TMOE 

     

OR 

     

MOR 

   
  

TMOR 

     

Fig. 8  Sample of experimental results 
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Rather than employing parameters that appreciate the 
existence of open-loop edge [28]–[30], the analysis of 
experimental results is based on set parameters to measure the 
existence of closed-loop edge, namely the average number of 
detected objects (s1), the average number of detected edge 
pixels (s2), the average size of detected objects (s3), the ratio 
of the number of edge pixel per object (s4), and the average 
size of tenth biggest objects (s5). These parameters are to 
identify the requirement to become the desired algorithm, i.e., 
the method that delivered the meaningful result by producing 
the significant closed-loop edge while avoiding over-
segmentation. The desired algorithm is searched by assigning 

a rank for each method based on the following sorting 
mechanism: i.e., minimizing s1 and maximizing s2 - s5. The 
justification of employing these measurements is as follows. 
Minimizing s1 refers to the effort to avoid over-segmentation 
while maximizing s2 - s5 refers to the effort to appreciate the 
appearance of a significant object that typically occupies a 
more extensive region and longer edge compared to a 
meaningless object or noise. The result of measuring s1 – s5 
from the edge map produced by each algorithm for 120 test 
images from Knoll’s dataset are shown in Figure 9a–e, 
respectively. 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

Fig. 9  Experimental results (a) s1; (b) s2; (c) s3; (d) s4; (e) s5 
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Scrutinizing the experimental result in Figure 9 based on 
the instrument defined for s1 – s5 delivers the following 
phenomena. The result of s1 in Figure 9a shows the advantage 
of the proposed approaches to significantly reduce the number 
of detected objects even though it does not eliminate over-
segmentation. In this case, the OR delivers the highest 
reduction, which produces a 62.84% reduction compared to 
Canny, while the lowest is OE, which produces 24.19% 
reduction. Meanwhile, the result of s2 in Figure 9b presents 
an insignificant difference in the number of detected edge 
pixels, although Canny produces a slightly higher number of 
edge pixels on average compared to the proposed approaches. 
The results of s3 and s4 in Figures 9c and 9d respectively 
emphasize the benefits of the proposed approaches to deliver 
bigger objects and detect more edge pixels per object 
compared to Canny. Again, OR scores are higher than the 
other proposed approaches, while OE scores are the lowest. 
Moreover, the benefit of the proposed approaches is presented 
by s5 in Figure 9e, in which all proposed approaches 
significantly score higher than Canny. The experiment proves 
that the proposed approaches generically improve the 
production of bigger sizes of closed-loop edges. This finding 
discloses that the closed-loop network of uncertainty always 
exists when the Entropy or relative-entropy have enough 
sensitivity to measure the object’s membership from each 
pixel in an image. 

The search for the most desired algorithm is then conducted 
by assigning the ranking for each detector based on s1 – s5 
instrument above, as given by Table 1. The visualization of 
Table 1 in terms of the rank average and its deviation is given 
in Figure 10, in which the lowest average of rank score 
becomes the most desired algorithm. The experimental result 
shows that the most desired algorithm is held by OR, and then 
followed by MOE, MOR, and TMOE as the second most 
desired. The last desired approaches are held by OE, TMOR, 
and Canny algorithm. 

TABLE I 
RANK SCORE OF EDGE DETECTOR ALGORITHM 

Instrument Cathe OE MOE TMOE OR MOR TMOR 
min s1 7 6 4 3 1 2 5 
max s2 1 2 3 5 7 6 4 
max s3 7 6 4 3 1 2 5 
max s4 7 6 3 4 1 2 5 
max s5 7 4 3 2 1 5 6 

 

 
Fig. 10  The ranking of desired methods based on the average rank score. 
Lowest score become the most desired method. 

IV. CONCLUSION 

The mechanism of entropy-based algorithms matches the 
edge detection task, i.e., to detect an edge point by measuring 
the uncertainty of pixel membership to the closest object in an 
image. This approach follows the behavior of an object in a 
natural scene in which the closer position of a point to the 
center of the object exhibits higher membership of the point 
to the object, while the closer position to the edge exhibits 
lower membership. In this case, the higher membership to an 
object is represented by the lower entropy value or higher 
relative entropy. The edge point is acknowledged by detecting 
the maximum uncertainty that is acknowledged by higher 
Entropy or lower relative entropy in a neighboring 
environment.  

This approach enables the achievement of a closed-loop 
edge as long as the Entropy or relative-entropy is sensitive 
enough to measure the uncertainty of object membership. The 
benchmark shows that Entropy, relative-entropy, and their 
enhancements deliver better performance to generate closed-
loop edge compared to Canny algorithm. Hence, it is worth 
noting that the future edge detection algorithm capable of 
retrieving complete boundary information from the image 
will soon be dominated by the entropy-based algorithm. The 
experiment also shows some cases where Entropy or relative-
entropy poorly presents the content of an image due to the 
dominant blurry scene occupying a wide histogram that spans 
from the dark to bright pixels. In this condition, further 
optimization of Entropy and relative entropy are required to 
extend their sensitivity to deal with pixel uncertainty. Further 
research activities will address this issue. 
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