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Abstract— Engineering Drawing (ED) digitization is a crucial aspect of modern industrial processes, enabling efficient data 

management and facilitating automation. However, the accurate detection and recognition of ED elements pose significant challenges. 

This paper presents a comprehensive review of existing research on ED element detection and recognition, focusing on the role of neural 

networks in improving the analysis process. The study evaluates the performance of the YOLOv7 model in detecting ED elements 

through rigorous experimentation. The results indicate promising precision and recall rates of up to 87.6% and 74.4%, respectively, 

with a mean average precision (mAP) of 61.1% at IoU threshold 0.5. Despite these advancements, achieving 100% accuracy remains 

elusive due to factors such as symbol and text overlapping, limited dataset sizes, and variations in ED formats. Overcoming these 

challenges is vital to ensuring the reliability and practical applicability of ED digitization solutions. By comparing the YOLOv7 results 

with previous research, the study underscores the efficacy of neural network-based approaches in handling ED element detection tasks. 

However, further investigation is necessary to address the challenges above effectively. Future research directions include exploring 

ensemble methods to improve detection accuracy, fine-tuning model parameters to enhance performance, and incorporating domain 

adaptation techniques to adapt models to specific ED formats and domains. To enhance the real-world viability of ED digitization 

solutions, this work highlights the importance of conducting testing on diverse datasets representing different industries and 

applications. Additionally, fostering collaborations between academia and industry will enable the development of tailored solutions 

that meet specific industrial needs. Overall, this research contributes to understanding the challenges in ED digitization and paves the 

way for future advancements in this critical field. 
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I. INTRODUCTION

Engineering drawings (EDs), such as piping and 

instrumentation diagrams, electrical and electronic drawings, 

and mechanical drawings, are commonly archived in various 

formats, including computer-aided design (CAD) drawings, 

PDF, and image formats [1], [2], and [3]. Digitizing EDs is 

necessary for applying technology in the shipbuilding and 

plant engineering industries, which involves applying digital 

image processing and computer vision techniques for pre-

processing, element detection, classification, and sometimes 

inferring relations between elements [2], [4]–[6]. Recent ED 
digitization trends have involved artificial intelligence, with 

many deep learning-bound neural network models proposed 

for object and element recognition [7]–[10]. Various methods 

have been proposed, including back propagation neural 

networks [11], semi-automated heuristic methods [9], and the 

use of regional proposal networks (RPN) and convolutional 

neural networks (CNN) [12], with a focus on finding and 
recognizing ED elements. 

The digitization process for engineering drawings, 

particularly complex EDs such as process flow diagrams, 

piping, and instrumentation diagrams, requires accurate 

object and element detection and a certain degree of 

contextualization [1]. That is, the meaning and relevance of 

the digitized information have to be interpreted according to 

a set of rules for a specific application. Early efforts to digitize 

these complex EDs relied on relatively rudimentary software, 

which has since become obsolete due to its incompatibility 

with modern hardware and software requirements [1]. 

However, more recent techniques, such as convolutional 
neural networks, have been developed to cater to the 
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increasing demands for ED digitization across various 

industries [2]. 

Convolutional neural networks (CNN) have shown 

significant promise for digitizing EDs, with a reported 

accuracy rate exceeding 98% for engineering drawing 

classification [2]. Using CNN for ED analysis also has the 

added speed advantage compared to traditional digitization 

algorithms. To maximize their efficiency, these CNN models 

often employ data enhancement techniques such as rotation 

transformation, random cutting, and applying salt and pepper 
noise to expand the dataset, thereby improving the model's 

training [2]. Despite these advancements, considerable 

challenges remain, such as achieving a high degree of 

automation in the digitization process, particularly for more 

complex engineering diagrams [1].  

According to previous studies, engineering drawings 

consist of various elements such as text, symbols, characters, 

units of measurement, notation, visual projection style, and 

page layout [1]. This study focuses explicitly on extracting 

three elements, which are text, symbols of components, and 

characters [9], [13]–[17]. With the increasing volume of data 
in engineering and manufacturing businesses, it is necessary 

to digitize EDs to process, analyze, and utilize them 

efficiently [18]. Manual analysis of EDs is time-consuming, 

and researchers have proposed using neural networks for ED 

digitization and image processing techniques for image 

enhancement [1].  

This study highlights the significance of neural networks in 

improving the ED analysis process in academia and industry. 

By using neural networks, specifically CNN, the study 

demonstrates that it is possible to develop advanced computer 

vision models capable of accurately detecting and recognizing 
various elements within EDs, such as symbols and text. These 

neural network-based models offer a robust and efficient 

approach to digitizing EDs, reducing the need for manual 

analysis and increasing productivity. The potential benefits of 

adopting neural network techniques in ED analysis include 

faster and more accurate results, improved object 

specification and assembly processes, and benefits in 

academic research and practical applications in industries 

such as shipbuilding and plant engineering.  

The paper is organized into sections, starting with a review 

of related works and industrial practices of ED analysis in 

section II. It is followed by a proposed neural network 

approach in section III, which analyses the previous and 

recent methods. Section IV provides the results and 

discussion. Finally, section V provides the conclusion.  

II. MATERIAL AND METHODS 

Various digital image processing techniques are involved 

in digitizing EDs, which include pre-processing, symbol 

detection, classification, and contextualization. Binarization 

or image thresholding is a commonly used pre-processing 

method to remove noise and improve object localization while 

thinning or skeletonization is used to discard object volume 

[19]. Review papers have been written on the digitization of 

these drawings, with some focusing on the field of EDs such 
as musical notes [20], CAD file creation for 3D reconstruction 

from paper-based mechanical drawings [21], [22], and OCR 

[23], [24]. Symbol detection [25] and classification [26] have 

also been reviewed in different parts of the digitization 

process. For instance, [27] proposed methods for interpreting 

mechanical drawings. 

Artificial neural networks, also known as neural networks, 

are inspired by how neurons in the brain process information 

and learn [28]. These networks are created for specific tasks, 

such as pattern recognition or data classification, and can 

learn from either examples or experience. One of the earliest 

and most established CNN architectures is the CNN 
architecture of Yann LeCun [29], which has greatly 

contributed to the development of deep learning. This 

architecture can learn weights and biases and uses an input 

image to learn output probabilities for each class. CNN 

consists of various layers, including convolution, ReLU, 

pooling, and fully connected layers. Yann LeCun's CNN 

architecture is considered one of the foundational models in 

deep learning [30], as shown in Fig. 1. 

 

 

Fig. 1  Architecture of a simple CNN model by Yann LeCun [30] 

 

The advancements in deep learning have led to the 

development of CNNs with specialized layers, which are used 

to automate the feature extraction process and improve the 

accuracy of object classification, localization, detection, 

identification, or segmentation tasks [35]. Furthermore, deep 

learning has opened up new possibilities for problem-solving, 

inspiring researchers to overcome previous limitations in the 

field [36]. Various machine learning methods, such as 

decision trees, support vector machines, and linear regression, 

also contribute to the learning process [31]–[33]. 

YOLOv4, the latest version of the CNN-based architecture, 

has been used to recognize symbols in electrical drawings 

with an accuracy rate of over 80% [34]. The use of CNN as 

the base of all detection and recognition models provides a 

better solution for the problem of digitizing and analyzing the 

elements in ED, and several deep learning-based neural 

networks have been developed for this purpose in recent years 
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[35]. Previous research has focused on symbol and text or 

character detection and recognition, which will be discussed 

in the following subsections [9], [10], and [35]. 

TABLE I 

THE SUMMARY OF PREVIOUS RESEARCH WORK REGARDING SYMBOL AND 

TEXT OR CHARACTER 

Ref. 
Proposed 

Technique 

Evaluation 

Metrics 
Issues 

[36] Heuristic-based 
Image 
Processing 

Accuracy 
(96.52%) 

Symbol and text 
overlapping issue 

[9] Heuristic-based 
CNN 

Accuracy 
(95.84%) 

The limited size of the 
dataset 

[2] YOLO & GAN 
model 

Accuracy 
(94%) 

Focus on symbol 
detection  

[37] CNN Precision 
(90%) 

Classification only 

[38] CNN Accuracy 
(95%) 

Focus on symbol 
classification only 

[6] YOLO Accuracy 
(80%) 

Focus on symbol 
classification  

[34] YOLOv4 Accuracy 
(80%) 

Focus on symbol 
detection 

[4] EAST & 
LSTM model 

Accuracy 
(86%) 

Used pretrained 
EAST model in 
detecting text 

[39] Hybrid of 
CNN-RNN-
LSTM 

Accuracy 
(95.2%) 

Not tested in ED  

[40] Multi-Channel 
CNN 
(MCCNN) 

Accuracy 
(93%) 

Not tested in ED 

[41] Faster R-CNN 
with multiple 
RPN 

Precision 
(91.81%), 

Not tested in ED 

[42] CRNN Precision 
(85.35%),  

Test on the front view 
of railway CAD 

drawing 
[16] CNN 

(ResNET-50) 
- No information 

regarding the 
percentage of 
matrices. 

[35] CNN Accuracy 
(98%) 

Classification only 

A. Symbols 

In 2018, researchers presented semi-automatic and 

heuristic methods for recognizing and localizing symbols in 

P&ID drawings [9]. They used both supervised and 

unsupervised learning methods to enhance classification 

precision and achieved an accuracy of 95% when tested on a 

dataset of symbols representing the drawing standard. 

However, due to the small size of the dataset, consisting of 
only 37 symbol kinds in total, there is a lack of a consistent 

reference dataset [9]. 

In 2020, Mani et al. [37] proposed a pipeline for digitizing 

P&IDs automatically using computer vision techniques. This 

pipeline uses a trained CNN for symbol detection with an 

average precision of over 90% and a graph search strategy to 

find relationships between symbols through lines. The 

proposed method enables various applications, such as 

equipment-to-sensor mapping and asset hierarchy creation, 

but the author noted that overlapping elements remain a 

challenging task that requires further improvement. 

The use of CNN for symbol detection in ED is becoming 

increasingly popular, as seen in studies by authors [16] and 

[35], who have claimed a high level of accuracy in their 

proposed methods. While the specific elements and types of 

drawings were disclosed in their research, it is believed that 

symbol detection is a crucial aspect of their studies. 

Luo et al. [34] proposed an engineering drawing 

identification approach based on the YOLOv4 algorithm, 

which can identify component targets under circuit diagrams 

with accuracies ranging from 83% to 97% for 14 selected 
categories of electrical components. The YOLOv4 algorithm, 

unlike traditional manual methods, can learn about picture 

attributes more comprehensively and generate predictions 

based on information from the entire picture, making it a more 

efficient approach for drawing audits. While the accuracies 

for two components reached 97%, the rest were below that, 

leading the authors to propose increasing the robustness and 

precision of the remaining components by 97%. 

As the use of YOLO for object detection and recognition 

continues to evolve, the latest versions, YOLOv5, YOLOv6, 

and YOLOv7, have made significant progress [43], [44]. 
However, accurate symbol detection in EDs still depends on 

having access to sufficient training datasets, which are 

currently not publicly available [2], [34]. As a result, the 

process of manually labeling or annotating symbols in EDs 

can be time-consuming. To fully digitalize EDs and transform 

them into CAD format, it is necessary to accurately recognize 

graphical elements [21], [26]. 

B. Text and Character 

Despite the success of deep learning methods for detecting 
and recognizing text and characters in EDs, challenges still 

exist, especially regarding complex representations of text 

and its proximity to other drawing elements. Jamieson et al. 

[4] proposed a text detection and recognition method in EDs 

using EAST and LSTM, which achieved a 90% detection rate 

for text strings, including vertical text strings. However, 

certain non-text diagram elements were detected as text. To 

address this, text recognition was used to obtain text strings in 

86% of the cases where text was detected. Nonetheless, the 

authors pointed out the need for further improvement in the 

detection of more complex representations of text, such as 
those located near other drawing elements [36], [45]. 

Geetha et al. [39] proposed a deep neural network model 

for hybrid handwritten text recognition (H2TR) using a 

sequence-to-sequence (Seq2Seq) approach in the following 

year. The model utilizes the features of CNN and recurrent 

neural networks (RNN) with the LSTM network. The CNN 

extracts the features from the handwritten image, which are 

then modeled using a sequenced approach and passed to the 

RNN-LSTM to encode the visual features and decode the 

available letter sequences in the handwritten image. The 

authors evaluated their model using integrated assessment 
modeling (IAM) [46] and Recognition and Indexing of 

Handwritten Documents and Faxes Handwritten Databases 

(RIMES) [47], which demonstrated competitive word 

accuracy results of 95.2% and 98.14%, respectively. 

Nonetheless, the author concluded that this method is only 

suitable for text in sequential order, whereas the text in ED is 

not sequential. 
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Chiney et al. [40] and Nagaoka et al. [41] proposed 

innovative automated handwritten text recognition methods. 

Chiney et al. utilized the Multi-Channel CNN (MCCNN) 

model and anchor-based object detection method, which were 

trained on three versions of hybrid datasets, to achieve a high 

classification accuracy above 93% for digit, alphabet, and 

digit and alphabet datasets. Meanwhile, Nagaoka et al. [41] 

proposed a multi-feature method on Faster R-CNN for robust 

text detection in natural scene images, achieving an 83.33% 

higher F-score than the baseline model, although the proposed 
method takes more time to execute than the baseline Faster R-

CNN model. 

Fang and Yin [42] developed a convolutional recurrent 

neural network (CRNN) for text recognition in train control 

system drawings that are difficult to automatically recognize 

due to the text's various changes, such as rotation, tilt, font 

changes, and proximity to lines. To address this issue, the 

authors trained their CRNN model using 6 million Chinese 

and 7 million English entry images, focusing on single-word 

rotation through iterative training with post-processing 

techniques such as tilting, noise addition, and blurring. As a 
result, their model achieved an accuracy of 98.36% in text 

recognition, demonstrating its ability to handle complex 

scenarios. 

While OCR was traditionally utilized to digitize letters and 

numbers, with the aid of algorithms to differentiate between 

handwritten and machine-written numbers [48], the 

emergence of deep learning approaches such as those used by 

Geetha et al. [39], Abhinandan Chiney et al. [40], and 

Nagaoka et al. [41], as well as the detection and recognition 

of text in ED by Jamieson et al. [2], reveals a shared emphasis 

on the identification of textual or character information within 
images through various methods [49]. It is necessary to 

accurately recognize graphical elements [21], [26]. 

C. Industrial Practice on ED Analysis 

The digital recognition of various elements within 

engineering drawings is an essential process. These elements 

are text, symbols, and characters, as illustrated in Fig. 2. 

Image conversion and pre-processing techniques are 

commonly used to prepare these elements for classification 

and detection. In recent years, CAD inspection software, also 
known as ballooning software, has gained popularity in 

analyzing EDs in industries. This software can perform 

extractions for dimensions, tolerance measurements, and 

notes from text-selectable AutoCAD or PDF files, as well as 

manage different markup edits and drawing balloons into 

existing structures. The software can also process PDF output 

and exports, as shown in the sample in Fig. 3. Overcoming the 

challenges related to ED file improvement is crucial for 

accurate detection and recognition of ED, which requires 

addressing issues such as congestion, overlap, tolerance 

dimensions, font styles, raster pictures, superfluous 
components, stamps, and shading. 

The process of digitizing text and characters has become 

easier with the advent of Optical Character Recognition (OCR) 

platforms, which can electronically identify and convert text 

or print documents into digital text documents [50]–[52]. 

OCR has become the first layer in text or characters [53] and 

is commonly used by companies and industries to automate 

the processing of managing physical typewritten documents, 

such as creating digital copies of structured documents like 

invoices, receipts, bank statements, and other accounting 

documents that need to be managed. In the case of industries, 

OCR software is used to analyze ED. 

OCR software is widely used to convert text or printed 

documents into machine-readable codes for data processing, 

with SimpleOCR and Tesseract being some of the most 

popular [50]. However, OCR is limited to the structure of 

typewritten and handwritten documents [53]. To improve 

OCR technology, machine learning and computer vision 
algorithms have been applied, such as Intelligent Character 

Recognition (ICR), which can examine a document's layout 

to determine what data to extract and can read both typed and 

handwritten text with no restrictions, making it the second 

layer of capabilities to recognize text or characters. Although 

the accuracy levels for reading handwritten text may not 

always be exceptionally high, ICR algorithms can still 

achieve 97–99 percent accuracy rates in structured forms 

when handling capital letters and simple-to-segment figures 

[17]. However, ICR fails when faced with more challenging 

conditions, such as unconstrained texts or non-separable (such 
as cursive) handwriting, leading to Intelligent Word 

Recognition (IWR). 

 

 
Fig. 2  Close-up view of P&ID text, symbol, and character [23] 

 

 
Fig. 3  Sample view of the ballooning software used for analyzing ED 
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Optimized for processing real-world documents that 

contain mostly free-form, hard-to-recognize data fields that 

are inherently unsuitable for ICR, Intelligent Word 

Recognition (IWR) is the third layer in text or character 

recognition that works with unstructured information (e.g., 

full words or phrases) from documents [53]. Although still a 

developing technology, some products such as Google Vision 

API and Amazon Textract have the ability to decode (scanned) 

printed or handwritten text, and a few prototypes are being 

tested and validated in pertinent environments, making IWR 
supposedly more advanced than handwritten ICR.  

If the ED designs are not in compliance with the ISO's 

standard ED formatting structures, the accuracy of the built-

in OCR in CAD inspection software for text and character 

recognition could drop by 80% below; however, using neural 

network models such as the EAST model and a LSTM model 

for text detection and recognition can increase accuracy to 

86%, although these models cannot still identify overlapping 

text, symbols, and characters as highlighted in Fig. 4 and 

previously discussed by Cao and Tan [54] and Roy et al. [55] 

due to the arbitrary lengths and sizes of text strings that 
describe symbols [4], [56]–[59]. 

 

 
Fig.  4  Close-up view of overlapping text and symbol on ED 

Although the built-in OCR in CAD inspection software can 

make inspecting ED documents or images for text and 

characters easier, misinterpretation can still occur due to 
error-prone text interpretation. This can make it difficult to 

associate corresponding text or characters with symbols, as 

demonstrated by the congested drawing in Fig. 5, where 

dimensions too close to each other can be read as one and 

different font styles used in the drawing result in incorrect 

ballooning, such as misidentification of dots as squares or 

inability to distinguish between a real dot and a dashed line. 

Despite this challenge, the use of pre-processing methods can 

improve the ballooning software's ability to recognize the 

different types of tolerances shown in Fig. 6, especially the 

non-formal ones, although capturing tolerance formats is still 

difficult. It is also crucial to convert the image before 
ballooning. Moreover, incorporating ICR and IWR 

techniques can greatly enhance text and character recognition 

in ED, which is essential for describing dimension and 

tolerance information in drawings [53]. 

In addition to the challenges of scaling, lighting, and pose 

variations in digitizing symbols, the compilation of a well-

defined and clearly labeled dataset is a complex task due to 

the lack of a benchmark and publicly available dataset, which 

can make the classification of symbols problematic, as noted 

in the paragraph. While there have been significant efforts to 

recognize one or two elements in the ED using image 

processing, computer vision, and neural networks to achieve 

better solutions, the models are still under improvement as 

they can wrongly detect information or parts as symbols, as 

demonstrated in Fig. 7. In the image, the green boxes indicate 

the area of the symbol that the detection and recognition 
model should identify, but the symbol can be incorrectly 

detected and recognized, as shown in the red boxes. 

 

 
Fig. 5  Congested drawing with ISOCP font style 

 
Fig. 6  Types of tolerance dimensions format in ED 

 
Fig. 7  Detect unnecessary parts as symbols 
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According to Moreno et al. [19], CNN is a recognition 

model that offers great affinity and functionality when used 

for computer vision tasks, given its capability to classify a 

wide pool of images with varying sizes and characteristics, as 

noted in the paragraph. Some researchers believe that 

complex ED digitization can be addressed through multiple 

CNN-based techniques [60]–[62], including AlexNet [63], 

VGGNet [64], ResNet [65], and Darknet [66]. The next 

section will discuss the current approaches that have been 

developed for the digitization, detection, and recognition of 
ED. 

III. RESULT AND DISCUSSION 

A. Proposed Approach 

While machine learning techniques, such as neural 

networks, show promise as an end-to-end approach to 

detecting symbols, text, and characters in electronic 

documents (EDs), there are still challenges to overcome, such 

as the availability of annotated training data and the effort 
required for training [19]. Recent works in the past five years, 

as shown in Table 1, highlight the gaps in current approaches, 

indicating the need for further research to address these 

challenges. Although studies on ED digitization have been 

conducted for over three decades, significant obstacles still 

need to be addressed to improve the suitability of the existing 

models [3]. 

Despite the effectiveness of CNNs in reducing the number 

of parameters and producing high-quality models for 

detecting and recognizing any element in an ED [67], the 

model is still imperfect, as it struggles to classify images with 

a degree of tilt or rotation [68]. To overcome this limitation, 
researchers have developed several approaches, including a 

combination of algorithms, techniques, and methods, to 

improve the performance of the existing CNN model [67]. 

Several studies have attempted to improve the CNN model 

for detecting and localizing symbols in ED, such as the 

heuristic-based method proposed by [9] and the Faster R-

CNN technique with multiple RPN to detect texts from 

different resolution feature maps by [41]. Hybrid models, 

utilizing existing CNN models, have also been experimented 

with by researchers, as seen in the works of [2] and [39]. 

Meanwhile, [40] improved a single model using two 
techniques. Despite these efforts, it can be observed that the 

recognition of ED symbols is still undergoing algorithmic 

enhancements within the existing model. 

Deep learning has become increasingly popular for various 

purposes and applications, including computer vision, 

recognition, clustering, detection, segmentation, and 

classification. CNNs have been widely utilized due to their 

high performance in computer vision applications. In the 

context of ED digitization, CNN-based models have been 

developed to address specific tasks despite the usual 

limitations caused by rotation, translation, degradation, and 
overlapping, among others, which can affect symbol 

classification accuracy. However, the need to manually 

collect and correct large amounts of input data for training still 

poses a significant challenge. Several methods based on data 

augmentation have been proposed, including affine 

transformations of pre-existing data samples to generate more 

data for a specific class. 

Many techniques can be used to optimize neural network 

models and reduce overfitting, such as transfer learning, 

which involves taking part in an existing pre-trained model 

and making minimal modifications to it to fit the current 

problem [64]. Additionally, fine-tuning the weights or layers 

can be done based on the expected outcome or domain of the 

model [64]. Another effective method is data augmentation, 

where pre-existing data samples are transformed using affine 

transformations to produce more data for specific classes [68]. 

Overfitting occurs when a model is too complicated for the 
problem it is trying to solve, leading to poor performance 

against new testing data [68]. Thus, it is crucial to employ 

techniques such as data augmentation, transfer learning, and 

model optimization to improve the accuracy and precision of 

domain prediction.  

B. Analyzing Approach 

This section discusses and evaluates prior research and 

industry practices related to ED. While progress has been 
made in detecting and recognizing ED elements, achieving 

100% accuracy is still impossible due to factors that persist 

during the analysis process. To understand the novelty of this 

study, a review of prior research in the ED element detection 

field is presented. Despite notable progress, the ED analysis 

process remains highly challenging due to various factors. 

The nature of the ED is one of the key factors affecting its 

analysis process. Different kinds of ED exist, including 

mechanical, electrical, electronic, and civil drawings, which 

can be further categorized as systems, infrastructures, 

structures, or model drawings. The accuracy and precision of 

ED element detection and recognition largely depend on the 
specific type of drawing and the proposed method. 

Researchers such as [2], [4], [9], [36], and [37] utilize a 

mechanical drawing known as P&ID, while [38] uses an 

electronic drawing dataset to obtain high accuracy and 

precision ranging from 86% to 97%. 

The second factor affecting ED detection and recognition 

of EDs is the file format used for testing. EDs can be found in 

various formats, including DXF, PDF, STEP, and image 

formats like TIFF and PNG. However, due to the prevalence 

of scanned images of older EDs, existing digitization methods 

often use raster images, which have low resolution. A pre-
processing step is needed to enhance the quality of these 

images, which involves techniques such as thresholding to 

reduce noise, background subtraction, color conversion, 

pattern matching, and convolution-based approaches [9], [36]. 

Another approach to improving scanned images is to convert 

them from raster images to vector images, which is effective 

in previous research [69]. For example, Marek Ciezobka used 

a pixel vector field approach with a Hopefield neural network 

model to convert scanned ED images into CAD formats 

(DWG and DXF) [69]. Although no details are available on 

the evaluation metrics used, the author claims that scanned 
ED images can be recreated and suggests further development 

for recognition. 

The third factor concerns the availability of an ED dataset. 

As with any field of deep learning, training requires a dataset 

to learn and improve. Unfortunately, some research papers 

utilize proprietary datasets that are not accessible to the public, 

while others employ existing datasets that can be found online. 

However, in the case of ED datasets, there is a lack of 
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availability compared to other datasets like animals, groceries, 

human body parts, and stationery, which have multiple 

datasets accessible online, such as MS-COCO, ImageNet, and 

CIFAR-10. Currently, the only available ED dataset is a 

symbol dataset made public by the author [9] through GitHub. 

The subsequent factor to consider is the viability of 

utilizing a deep learning approach that can recognize and 

detect all elements in ED. From 2017 to 2022, researchers 

attempted to use CNN for symbols, text, and characters as a 

basic deep-learning approach. However, the author [2] 
discovered a problem that needed to be solved to detect and 

recognize the elements in ED completely. The biggest 

challenge is related to overlapping elements and congested 

drawings, which have been discussed since 2002 by Lu [70], 

where graphics or symbols must be separated first. The author 

suggests that the Hough transform and a rule-based algorithm 

be used to segment the elements. In [2], [9], and [36], the 

authors use the Hough transform and SVM to separate text 

from symbols, while [37] uses a lighter CNN to segment text 

in ED. In [4], a segmentation method is also described. The 

fully end-to-end neural network is still under development, 
and the suitability of the existing deep learning approach is 

still being tested and not yet implemented in a real-world 

situation.  

One of the most popular approaches is the use of YOLO-

based methods. Many researchers, programmers, engineers, 

and technicians are currently testing YOLOv7. Wang et al. 

[44], the founders of YOLOv7, trained this model using the 

COCO dataset and obtained the highest accuracy of the real-

time model (YOLOv7-E6E, 56.8% AP) [44]. In this research, 

YOLOv7 CNN architecture was employed to assess its 

effectiveness in symbol detection within engineering 
drawings. The results revealed a promising potential for 

accurate symbol detection.  

However, achieving higher accuracy will require further 

optimization and fine-tuning of the model. Table II shows the 

results of the YOLOv7 model training at different epochs (1st 

to 500th) with a batch size of 16. The model was trained on 

207 ED images and tested on 21 ED images. The mean 

average precision result obtained is 0.23 mAP, shown in red 

boxes. Fig. 8 displays the training result of ED using YOLOv7. 

The model's performance is evaluated based on several 

metrics: Precision (P), Recall (R), mean Average Precision at 

IoU threshold 0.5 (mAP_0.5), and mean Average Precision 
over IoU thresholds from 0.5 to 0.95 (mAP_0.5:0.95). 

Additionally, the time taken for each training epoch is 

recorded in minutes. 

The YOLOv7 results from previous research work in Table 

II and Table I compare various techniques used for 

engineering drawing (ED) element detection and recognition. 

The previous research encompasses different methods, each 

with its respective evaluation metrics and limitations.  

In [36], a heuristic-based image processing technique 

achieved an accuracy of 96.52%, but it faced challenges with 

symbol and text overlapping. [9] employed a heuristic-based 
CNN with an accuracy of 95.84%, but the limited size of the 

dataset was a concern. The YOLO & GAN model in [2] 

achieved an accuracy of 94% but primarily focused on symbol 

detection. Similarly, [37] and [38] used CNNs with precision 

and accuracy of 90% and 95%, respectively, but were 

specialized in symbol classification. The YOLO model in [6] 

had an accuracy of 80% and focused solely on symbol 

classification, while YOLOv4 in [34] also achieved 80% 

accuracy but concentrated on symbol detection. 

Other techniques like EAST & LSTM model [4] attained 

an accuracy of 86% but used a pretrained EAST model for 

detecting text. The hybrid of CNN-RNN-LSTM in [39] 

achieved 95.2% accuracy but was not tested on ED. MCCNN 

in [40] achieved an accuracy of 93% but, similar to other 

approaches, was not evaluated on ED. Faster R-CNN with 

multiple RPN in [41] achieved a precision of 91.81%, but its 
evaluation did not include ED testing. CRNN in [42] reached 

a precision of 85.35% but was tested on front views of railway 

CAD drawings, not ED. [16] used CNN (ResNET-50) without 

specific metrics, and [35] achieved 98% accuracy but only 

focused on classification. 

Comparing these prior techniques with the results of 

YOLOv7 in this paper, it is evident that YOLOv7 shows 

promise in ED detection and recognition. While some 

previous methods achieved high accuracy, they often had 

limitations such as focusing on specific tasks (e.g., symbol 

detection or classification only), using pre-trained models, or 
not being tested on ED datasets. YOLOv7, on the other hand, 

exhibits a balanced performance in terms of precision, recall, 

and mAP scores, and its training process shows continuous 

improvement over epochs. Therefore, the paper's contribution 

lies in providing insights into the challenging ED analysis 

process while demonstrating the potential of YOLOv7 in 

addressing these challenges and its suitability for practical 

implementation in the industry. 

TABLE II 

YOLOV7 PERFORMANCE METRICS DURING TRAINING  

Epochs P R mAP_0.5 mAP_0.5:0.95 

50 0.823 0.545 0.597 0.415 
100 0.558 0.737 0.72 0.525 

150 0.668 0.739 0.764 0.559 
200 0.761 0.775 0.808 0.602 
250 0.857 0.752 0.819 0.611 
300 0.876 0.744 0.823 0.611 
400 0.851 0.754 0.815 0.606 
500 0.864 0.758 0.803 0.604 

 

 

Fig.  8  YOLOv7 result on ED dataset. 

 

Besides, the pre-processing procedures required to 

generate an improved ED image are often unavailable in the 

sample CAD inspection software. Wang et al. [71] have 

recently shown that a neural network model can be used to 
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enhance the resolution of an image. The model, called Real-

ESRGAN and developed by [71], can upscale raster images 

by utilizing training pairs and a more effective degradation 

process, aiding in image enhancement and restoration. The 

results of applying the Real-ESRGAN model to a mechanical 

ED image before and after enhancement are presented in Fig. 

9(a) and 9(b), respectively. 

The digitization of ED still requires a significant amount of 

research, although previous researchers have succeeded in 

their methods and aim to achieve 100% detection and 
recognition of the ED elements they focus. Based on the 

previous work discussed, an end-to-end solution is feasible. 

 

 
Fig. 9  The enhancement of ED image using the Real-ESRGAN model 

IV. CONCLUSION 

This research contributes to engineering drawing (ED) 

digitization by addressing the challenging ED element 

detection and recognition process. The study highlights the 

significance of neural networks, particularly YOLOv7, in 

improving the accuracy and efficiency of this critical process 

in both academic and industrial settings. A comprehensive 

review of previous works shows that achieving 100% 

accuracy in ED analysis remains elusive due to various 
persistent factors. However, the results obtained from the 

YOLOv7 model demonstrate promising performance, with 

progressively improving precision, recall, and mAP scores 

across training epochs. 

By comparing the YOLOv7 results with prior research 

techniques, it becomes evident that YOLOv7 exhibits a 

balanced and versatile performance in ED detection and 

recognition. Unlike previous approaches focused solely on 

symbol detection or classification, YOLOv7 simultaneously 

demonstrates competence in both tasks. Furthermore, its 

reliance on neural networks enhances adaptability and 

potential applications in various industries. 
This paper's findings underscore the importance of 

continued research and development in ED digitization, as it 

plays a pivotal role in transforming manual workflows into 

efficient and automated processes. The utilization of neural 

networks, particularly YOLOv7, promises to revolutionize 

ED analysis, paving the way for more accurate, reliable, and 

time-efficient practices in academic research and industrial 

applications. 

This study opens new avenues for future research, such as 

exploring ensemble methods, fine-tuning network parameters, 

and conducting extensive real-world testing. We hope this 
research will inspire further investigations and collaborations 

to overcome the existing challenges in ED digitization, 

bringing us closer to achieving higher accuracy and efficiency 

in this critical domain. Integrating advanced technologies like 

YOLOv7 in ED analysis will contribute significantly to 

advancements in engineering, architecture, and various other 

industries that rely on accurate digital representations of 

complex drawings. 
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