
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

A Study of Database Connection Pool in Microservice Architecture

Nur Ayuni Nor Sobri a, Mohamad Aqib Haqmi Abas a, Ihsan Mohd Yassin b,*, Megat Syahirul Amin Megat Ali b,

Nooritawati Md Tahir c, Azlee Zabidi d, Zairi Ismael Rizman e

a School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
b Microwave Research Institute, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

c Research Nexus UiTM, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
d Faculty of Systems & Software Engineering, College of Computing & Applied Sciences, Universiti Malaysia Pahang, Pahang, Malaysia

e School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 23000 Dungun, Terengganu, Malaysia

Corresponding author: *ihsan.yassin@gmail.com

Abstract—The growing number of the Internet presents a higher requirement for backend application systems to be designed to handle

thousands of user traffic concurrently. Microservice architecture is also in a rising trend which allows each service to scale horizontally

by its throughput, and load helps scale the system efficiently without waste of resources like in the traditional monolithic application

system. Among the many strategies to optimize delivery, the database connection pool helps backend systems to access databases

efficiently by reusing database connections, thus eliminating the computationally expensive need to open and close connections with

new requests. Additionally, database connection pools can help improve applications' connection reliability. This paper aims to

determine the most suitable maximum amount of database connections in a microservice setting, where multiple instances of the service

are used for scalability and high availability purposes of the system. To tackle the scalability issue and achieve the high availability of

our services, we propose running multiple instances of each of our services in production, especially for services that we anticipate

would be hit the most during runtime. This allows load balancing of request load between multiple instances and having backup

instances to serve HTTP requests when one of the instances is down. The result obtained in this experiment shows that five database

connections give the best result in microservice settings as described in our methodology.

Keywords— Microservice; backend application system; database connection pool.

Manuscript received 10 Dec. 2021; revised 18 Jan. 2022; accepted 21 Apr. 2022. Date of publication 31 Aug. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In the past few years in the cloud services domain,

companies have moved from monolithic architecture

applications to microservices architecture. The idea of
breaking a complex monolithic application that serves the

whole functionality in a single application to multiple loosely

coupled and single-purpose started with big tech companies

like Apple, Google, and Netflix [1]-[3] due to numerous

advantages compared to the traditional monolithic

architecture.

Scalability and flexibility are some of the most important

advantages of microservice architecture [4]-[10]. The

traditional approach to handling scalability is to increase the

number of instances or the size of the whole monolithic

application. Although increasing the number of instances of
the application running can help to achieve high availability

and fault tolerance, the default way to increase scalability is

by increasing the size of the application as it is less complex.

However, in monolithic architecture, this is very inefficient

because, in most cases, only a few particular domains of

services are expected to be used by many users and require

high throughput.

In a microservice architecture, each service is loosely-

coupled, serving a single purpose and independent from other

services [2], [4], [7], [11]-[4]. Hence, this allows for
deploying and scaling each service independently and using

different policies from the other services [3], [4], [11], [15]-

[17].

Most current backend application systems require an

interaction between the application and database to store all

user's data. Most legacy backend systems use a direct method

to invoke a call to the database where the application would

first create a database connection in the program, execute the

SQL query to the database, and close the database connection

[18-22]. However, as the application gets bigger and more

complex, making connections to the database is inefficient as

566

JOIV : Int. J. Inform. Visualization, 6(2-2): A New Frontier in Informatics - August 2022 566-571

it would greatly increase the system overhead to create and

close the connection frequently [19].

The new backend application system uses a database

connection pool (DCP), where the application would help

create and maintain the connections so they can be reused in

the future. The general idea is that connections would be in

either two states, whether it is being used or idle [23]-[25].

Each time there is a need to make a database request, the

application would check if there is any idle connection for it

to use. Else it would create a new connection for as long as it

has not reached the maximum amount of connection
threshold. Postgres databases, by default, have 100

'max_connections' limit, and if this limit is being hit under

heavy load, the backend application would return an error to

end users [23], [26].

Some backend applications allow the developer to choose

their own configurations for managing the pool. This is often

important as each application would have its own different

requirements. Generally, a medium-sized monolithic

application would usually opt for the default amount of

maximum database connections (100 with Postgres database).

Having a too high amount of maximum connections can also
cause problems as it can overwhelm the database and

application system, requiring a larger amount of memory

(RAM) for maintaining the connections and high overhead in

terms of CPU cycle and RAM for setting up and closing the

connection.

Generally, choosing the configuration for the database

connection pool, such as the maximum amount of connections

and maximum idle time of connection, requires performance

testing. It aims to ensure that the most suitable configuration

is chosen for the backend application where it would not cause

a bottleneck (too low amount of connections) and not waste
the system's resources (too high amount of connections).

Therefore, this paper aims to find the most suitable maximum

amount of database connections in a microservice setting,

where multiple instances of the service are used for scalability

and high availability purposes of the system.

We have found some relevant journal articles related to our

work using database connection pool in their respective

research. In Al-Hawari et al. [27], the authors use a database

connection pool to develop their Student Information System

(SIS). This three-tier web application allows registrars to

perform tasks involving system setup, admission, registration,

graduation grades processing, and processing and report. The
SIS system was developed using Java, and the authors set up

a JDBC connection pool to solve the possible issue of

scalability of the system.

A study of the database connection pool by Zhang et al.

[18] shows a comparison between the traditional connection

pool with tomcat, hibernate, and the new proposed connection

pool. The result shown from the study shows how the

differences in methods used in managing the connection pool

directly affect the system's performance.

In both Huang et al. [28], [29], the authors study the

security aspect of database connection pool in 3 tiers web
systems. In [28], the authors use a formal model of 3 tiers web

system, and a few security problems faced in the web system

were found in the model. Few methods for solving the

security issue were introduced and proposed, such as securing

the application, terminal user tracing, and modifying the

previous standard on securing the database connection pool.

The database connection pool audit system (DCPAS) is

proposed by Huang et al. [29] to trace the end user's identity

and bind the user's operations to execute the SQL statements

to the database. The proposed DCPAS allows for a better

security audit, as the admin can trace the detailed SQL

statements if an illegal user makes an SQL injection to the

system.

II. MATERIAL AND METHOD

To tackle the scalability issue and achieve the high

availability of our services, we propose running multiple

instances of each of our services in production, especially for

services that we anticipate would be hit the most during

runtime. This allows load balancing of request load between

multiple instances and having backup instances to serve

HTTP requests when one of the instances is down.

Fig. 1 Multiple instances for role and permission service

Fig. 1 shows the example of a single service with the

proposed architecture to run in the production server, where

three instances are running for the role and permission

service. This is only one small service out of multiple other

services we run on the production server. The service in Fig.

1 handles only the roles and permissions information for the
system. Any request that requires the roles/permissions logic

from the API gateway would be delegated to this service.

Each service instance would connect to the Postgres database

with the roles table and permissions table. However, the

microservice architecture is flexible and does not set any hard

requirements for database setup. In the production system, we

can set up the database on the same server, set up the database

on a different server, or opt for managed database services that

most cloud providers offer. However, accessing a database on

a different server or managed service would have an increased

network latency due to the request calls needing to be made
to an external server instead of accessing a database in a

different port on the same server.

Fig. 2 Roles and Permission table

Fig. 2 shows the roles and permissions table with its

567

intermediary many-to-many table. Our system uses a role-

based access control (RBAC) authorization model. In RBAC,

users have access to an object/page/module based on their

respective assigned roles in the system [30]. Roles are

commonly assigned based on job function, and permissions

are defined based on job authority and job responsibility.

To find the most suitable maximum amount of database

connections, we run the performance testing on this service

with two different scenarios; first, with a single instance, as

shown in Fig. 3; and second, with three instances and a load

balancer, as shown in Fig. 4.

Fig. 3 Single instance for role and permission service

Fig. 4 3 instances for role and permission service with Nginx as load balancer

The load testing was done with Arm64v8 CPU

architecture. The limitation of the platform applies to this

project. We also limit the go runtime (for each instance) to use

a single CPU (with GOMAXPROCS = 1) and 128MB of

memory (ulimit). However, we found that neither limiting the

CPU nor RAM affects our experiment as none of the tests

would even hit the limit. However, the situation would be

different in production servers when we deploy the services
with a more limited amount of CPU cycles and RAM

configuration for our machine. The benchmark performance

testing would be done using the Vegeta load testing tool

written in Go. In this test, we are using the default setting of

the Postgres database as it would be in production without

tuning any configuration. We also did not change any

optimization being done by Postgres for similar SQL request

calls either by its shared buffer cache or operating system

cache method. The only manipulated variable for this

experiment is the maximum number of connections and

instances (for the two different scenarios); everything else
would be similar throughout the test.

We would test on four different amounts of connections for

the database connection pool, which are 1, 5, and 10. The load

tester would make 500, 1000, and 2000 requests per second

(rps) to the service. The load test would be done for 5 seconds

for each test. Only one API endpoint would be tested for this

experiment, which is the "/roles" endpoint that would give all

the roles in the database table, including its permissions

relation. The reason that role/permission services are chosen

for this experiment is due to this service being one of the most

used in the system. Multiple endpoints in the system require

authorization checks on whether a specific user has the

necessary role and permission to access the endpoint.

III. RESULT AND DISCUSSION

The results of the performance tests are as follows:

TABLE I

MAXIMUM LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP REQUESTS

PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE CONNECTIONS

WITH SINGLE INSTANCE SERVICE

Number of

Connections

Requests Per Second

500 1000 2000

1 438.966ms 9387ms 19433ms
5 64.758ms 156.088ms 1658ms

10 24.278ms 119.675ms 499.172ms

Fig. 5 Bar chart for maximum latency (in ms) for different number of HTTP

requests per second made to different number of database connections with

single instance service

Table 1 and Fig. 5 show the result of maximum latency for
a different number of requests made to a different number of

connections in a single instance service (as shown in Fig. 3).

As seen, the max latency for 500 requests per second (rps)

made for 1, 5 and 10 connections declines as the number of

connections increase. For a single connection, the latency is

at 438.966ms, then drops to 64.758ms when having five

connections and 24.278ms for ten connections. For 1000 and

2000 HTTP rps, we can see that having a single database

connection becomes a bottleneck to the service as it requires

9387ms and 19433ms, respectively. Note that this is without

tuning any shared buffer cache or operating system level

cache for the Postgres database default setting, which shows
the latency struggle of having a single connection to the

database. Meanwhile, for five connections, the service starts

to bottleneck when having 2000 rps where it records 1658ms

latency. For 1000 rps the service can still tolerate the

throughput with 156.088ms latency. For 20 connections, the

latency increases as the number of requests increase to 1000

and 2000 with 119.675ms and 499.172ms, respectively, but it

is still bearable compared to having 5 and 10 connections.

568

TABLE II

99TH PERCENTILE LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP

REQUESTS PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE

CONNECTIONS WITH A SINGLE INSTANCE SERVICE

Number of

Connections

Requests Per Second

500 1000 2000

1 203.918ms 7442ms 17749ms
5 19.166ms 55.95ms 426.78ms
10 4.741ms 35.356ms 205.427ms

Fig. 6 Bar chart for maximum latency (in ms) for different number of HTTP

requests per second made to different number of database connections with

single instance service

Table 2 and Fig. 6 show the result of 99th percentile latency

for different requests made to different numbers of

connections in a single instance service. In some benchmark

situations, this number is often used as a realistic measure of

latency where 99 percent of end users would receive this
latency, while maximum latency can show if there has been a

sudden hiccup to a system (that might happen for a single

request). As seen, the latency shows the same pattern as in the

maximum latency result, where the latency decreases as the

number of connections increases, and a single connection

shows a bottleneck in performance in both 1000 and 2000 rps

tests. For 500 rps, a single connection gives 203.918ms

latency, followed by 5 connections with 19.166ms and 10

with 4.741ms. For 1000 rps, a single connection still shows a

bottleneck result with a high number of 7442ms, followed by

55.95ms for five connections and 33.356ms for ten
connections. For 2000 rps, we can see five connections start

to show the bottleneck in performance as well with 426.78ms

but it is far lower than 17749ms recorded by a single

connection. 10 connections show a good performance of

205.427ms.

TABLE III

MAXIMUM LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP REQUESTS

PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE CONNECTIONS

WITH THREE INSTANCES SERVICE

Number of

Connections

Requests Per Second

500 1000 2000

1 33.455ms 52.652ms 164.504ms
5 36.346ms 29.725ms 52.948ms
10 35.298ms 59.407ms 226.646ms

Table 3 and Fig. 7 show the result of maximum latency for

a different number of requests made to different numbers of

connections in a three-instance service (as shown in Fig. 4 in

Section III).

Fig. 7 Bar chart for maximum latency (in ms) for different number of HTTP

requests per second made to different number of database connections with

three instances service

We can see that even having a single connection, the

service does not suffer the same performance impact as when

having only a single instance of service. This shows that

having multiple instances helps to balance the throughput load.

For 500 rps, a single connection gives the best latency with

33.455ms, followed by ten connections with 35.298ms, and

lastly, five with 36.346ms. For 1000 and 2000 rps, five

connections show far better performance latency compared to

single and ten connections. In 1000 rps result, five
connections only recorded 29.725ms, better than their

performance in 500 rps, followed by a single connection with

52.652ms and ten connections with 59.407ms. For 2000 rps,

five connections record a low 52.948ms, followed by a single

connection with 164.504ms and ten connections with

226.646ms.

TABLE IV

99TH PERCENTILE LATENCY (IN MS) FOR DIFFERENT NUMBER OF HTTP

REQUESTS PER SECOND MADE TO DIFFERENT NUMBER OF DATABASE

CONNECTIONS WITH THREE INSTANCES SERVICE

Number of

Connections

Requests Per Second

500 1000 2000

1 7.496ms 14.672ms 54.697ms
5 6.227ms 13.279ms 18.513ms
10 7.111ms 18.173ms 55.855ms

Fig. 8 Bar chart for maximum latency (in ms) for different number of HTTP

requests per second made to different number of database connections with

three instances service.

Table 4 and Fig. 8 show the result of 99th percentile latency

for different requests made to different numbers of

569

connections in a three-instance service. Five connections

show the best-recorded performance for all 500, 1000, and

2000 rps. In 500 rps, five connections record the lowest

latency with 6.227ms, followed by 7.111ms by ten

connections, and lastly, a single connection with 7.496ms. For

1000 rps, five connections give 13.279ms latency, followed

by 14.672ms for a single connection and 18.173ms for ten

connections. Lastly, for 2000 rps, five connections only give

18.513ms compared to a single connection with 54.697ms and

ten connections with 55.855ms.

Based on all results shown in this section, we can see that
a low number of database connections would start to become

a bottleneck when being hit with a larger load, especially with

a single instance service. However, the performance improves

when multiple instances are involved as load balancing the

requests throughput helps to distribute the load instead of only

a single instance to serve the requests. Having a larger amount

of connections is not guaranteed to have a better performance

in terms of latency. As we can see from the result in the

experiment ran with multiple instances, the diminishing return

effect for this could be caused by multiple factors such as the

algorithm used to assign connection pool to request and how

the performance from the database side when handling
numerous concurrent connections.

Fig. 9 Graph result for 2000 requests per second with five database connections in a single instance

Fig. 10 Graph result for 2000 requests per second with five database connections with three instances

In Fig. 9 and Fig. 10, another noticeable difference we see

between serving load with a single instance and multiple

instances is we notice there is a constant spike for every few
milliseconds recorded, which could be because of how the

load balancer works when distributing the load between

instances. However, even with the spike in latency, the overall

result of distributing load with multiple services is far better

than serving all the requests with only a single instance.

IV. CONCLUSION

We have presented the load testing done to our service to

obtain a suitable number of database connections for our
database connection pool (DCP). We tested for a single

instance of our role/permission service as it is one of the most

used services in our system, mostly due to authorization

middleware checks for our users to access endpoints. From

the result of our experiment and our proposed architecture for

a production environment, we choose the five connections
configuration as it gives the best performance for multiple

instances service setup, as shown in Table 3 and Table 4 result.

ACKNOWLEDGMENT

The authors thank the Ministry of Higher Education,

Malaysia, for financial support through the Long-term

Research Grant Scheme (LRGS) 600-RMC/LRGS 5/3

(001/2020).

570

REFERENCES

[1] A. R. Sampaio et al., "Supporting Microservice Evolution," presented

at the 2017 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 2017.

[2] Y. Gan et al., "An Open-Source Benchmark Suite for Microservices

and Their Hardware-Software Implications for Cloud & Edge

Systems," presented at the Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019.

[3] V. S. S. K. Peddoju, "Container-based Microservice Architecture for

Cloud Applications," presented at the International Conference on

Computing, Communication and Automation.

[4] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.

Safina, "Microservices: How To Make Your Application Scale," in

Perspectives of System Informatics, (Lecture Notes in Computer

Science, 2018, ch. Chapter 8, pp. 95-104.

[5] W. Hasselbring and G. Steinacker, "Microservice Architectures for

Scalability, Agility and Reliability in E-Commerce," presented at the

2017 IEEE International Conference on Software Architecture

Workshops (ICSAW), 2017.

[6] I. A. S. D. P. E. Subyantoro, "Designing microservice architectures for

scalability and reliability in ecommerce," Journal of Physics:

Conference Series, 2020.

[7] M. Villamizar et al., "Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud," in 2015

10th Computing Colombian Conference (10CCC), 2015: IEEE, pp.

583-590.

[8] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo,

"Microservices in practice: A survey study," arXiv preprint

arXiv:1808.04836, 2018.

[9] O. Al-Debagy and P. Martinek, "A comparative review of

microservices and monolithic architectures," in 2018 IEEE 18th

International Symposium on Computational Intelligence and

Informatics (CINTI), 2018: IEEE, pp. 000149-000154.

[10] H. Dinh-Tuan, M. Mora-Martinez, F. Beierle, and S. R. Garzon,

"Development frameworks for microservice-based applications:

Evaluation and comparison," in Proceedings of the 2020 European

Symposium on Software Engineering, 2020, pp. 12-20.

[11] C.-Y. Fan and S.-P. Ma, "Migrating monolithic mobile application to

microservice architecture: An experiment report," in 2017 ieee

international conference on ai & mobile services (aims), 2017: IEEE,

pp. 109-112.

[12] A. Jindal, V. Podolskiy, and M. Gerndt, "Performance modeling for

cloud microservice applications," in Proceedings of the 2019

ACM/SPEC International Conference on Performance Engineering,

2019, pp. 25-32.

[13] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, "Microservices in agile

software development: a workshop-based study into issues,

advantages, and disadvantages," in Proceedings of the XP2017

Scientific Workshops, 2017, pp. 1-5.

[14] D. S. Linthicum, "Practical use of microservices in moving workloads

to the cloud," IEEE Cloud Computing, vol. 3, no. 5, pp. 6-9, 2016.

[15] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, "Distributed

redundancy scheduling for microservice-based applications at the

edge," IEEE Transactions on Services Computing, 2020.

[16] D. I. Savchenko, G. I. Radchenko, and O. Taipale, "Microservices

validation: Mjolnirr platform case study," in 2015 38th International

convention on information and communication technology, electronics

and microelectronics (MIPRO), 2015: IEEE, pp. 235-240.

[17] C. Richardson, Microservices patterns: with examples in Java. Simon

and Schuster, 2018.

[18] T. F. Zhang, Y. J. Zhang, and J. Yao, "A Study of Database Connection

Pool," Applied Mechanics and Materials, vol. 556-562, pp. 5267-5270,

2014, doi: 10.4028/www.scientific.net/AMM.556-562.5267.

[19] F. Liu, "A Method of Design and Optimization of Database

Connection Pool," presented at the 2012 4th International Conference

on Intelligent Human-Machine Systems and Cybernetics, 2012.

[20] R. Luo and X. Tang, "Design and Realization for JDBC-based

Database Connection-pool," Computer Engineering, vol. 9, p. 036,

2004.

[21] X. Zhongke, "Database connection pool technology and its

application," Journal of Changsha University of science and

Technology, vol. 2, pp. 67-71, 2015.

[22] Q. Liang, Z. Shen, J. Luo, H. Fan, D. Ming, and J. Li, "Study of

database connection pool in LBS platform," Comput. Eng, vol. 18, pp.

39-41, 2006.

[23] A. Edwards, "Let's Go Further," in Let's Go Further, vol. 1, 2021, ch.

Configuring the Database Connection Pool, pp. 116-122.

[24] C. Hou, Z. Yang, and W. Liu, "Application and improvement of

database connection pool based on J2EE architecture," Computer

Technology and Development, vol. 16, no. 10, pp. 8-10, 2006.

[25] G.-l. Feng and L.-h. Yang, "A New Method in Improving Database

Connection Pool Model," World Academy of Science, Engineering and

Technology, vol. 29, pp. 246-249, 2007.

[26] A. Trzop. "Estimate database connections pool size for Rails

application." https://docs.knapsackpro.com/2021/estimate-database-

connections-pool-size-for-rails-application (accessed.

[27] F. Al-Hawari, A. Alufeishat, M. Alshawabkeh, H. Barham, and M.

Habahbeh, "The software engineering of a three-tier web-based

student information system (MyGJU)," Computer Applications in

Engineering Education, vol. 25, no. 2, pp. 242-263, 2017, doi:

10.1002/cae.21794.

[28] B. H. Huang, T. J. Wang, Y. Ma, and F. Jiang, "Security Problem

Modeling of Database Connection Pool," Applied Mechanics and

Materials, vol. 543-547, pp. 3276-3279, 2014, doi:

10.4028/www.scientific.net/AMM.543-547.3276.

[29] B. H. Huang, Y. Ma, and F. Jiang, "Research on the Security Audit of

Database Connection Pool," Applied Mechanics and Materials, vol.

543-547, pp. 3286-3289, 2014, doi:

10.4028/www.scientific.net/AMM.543-547.3286.

[30] N. Meghanathan, "Review of Access Control Models for Cloud

Computing," presented at the Computer Science & Information

Technology (CS & IT), 2013.

571

