
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Dynamic Ransomware Detection for Windows Platform Using

Machine Learning Classifiers

M. Izham Jaya a, Mohd Faizal Ab. Razak a,*

a Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Corresponding author: *faizalrazak@ump.edu.my

Abstract— Ransomware attacks are also rising in this growing technological advancement world. This threat often affects the finance

of individuals, organizations, and financial sectors. To effectively detect and block these ransomware threats, the dynamic analysis

strategy was proposed and carried out as the approach of this research. This paper aims to detect ransomware attacks with dynamic

analysis and classify the attacks using various machine learning classifiers: Random Forest, Naïve Bayes, J48, Decision Table, and

Hoeffding Trees. The TON IoT Datasets from the University of New South Wales (UNSW) were used to capture ransomware attack

features on Windows 7. During the experiment, a testbed was configured with numerous virtual Windows 7 machines and a single

attacker host to carry out the ransomware attack. Seventy-seven classification features are selected based on the changes before and

after the attack. Random Forest and J48 classifiers outperformed other classifiers with the highest accuracy results of 99.74%. The

confusion matrix highlights that both Random Forest and J48 classifiers can accurately classify the ransomware attacks with the AUC

value of 0.997, respectively. Our experimental result also suggests that dynamic analysis with a machine learning classifier is an effective

solution to detect ransomware with an accuracy percentage exceeding 98%.

Keywords— Malware; ransomware detection; machine learning; classifier.

Manuscript received 22 Dec. 2021; revised 29 Jan. 2022; accepted 10 Apr. 2022. Date of publication 31 Aug. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Currently, attackers employ sophisticated methods to

create new types of profitable malware. Ransomware is a type

of cyber-attack that has recently gained popularity. The goal

of this malware is to encrypt user files, restrict access to them,

and then demand a ransom for the decryption key [1], [2].

Ransomware has become a serious menace to the computing

sector, necessitating fast action to avoid financial and moral

extortion. As a result, a new technique to detect and prevent

this type of assault is critical. Dynamic analysis, static

analysis, and a hybrid system that combined dynamic and
static analysis were the three types of detection approaches

used [3]–[5]. Most previous detection methods relied on a

time-consuming but feasible and effective procedure known

as dynamic analysis [6], [7].

Ransomware attacks first appeared in September 2013

using Rivest–Shamir–Adleman (RSA) public-key

cryptography. When more than 1,400,000 Kaspersky users

across numerous industries were targeted in 2016, it escalated

into a catastrophic problem. Since the ransomware

"WannaCry" infected over 400,000 machines across 150

countries in just one day in 2017, researchers have

concentrated their efforts on ransomware detection. Despite

this, the number of ransomware victims among enterprises

globally has climbed during 2018, reaching a high of 68.5
percent in 2021 [8]. Figure 1 depicts the global business

victimization rate from 2018 to 2021.

Fig. 1 Number of ransomware victimization in businesses worldwide

469

JOIV : Int. J. Inform. Visualization, 6(2-2): A New Frontier in Informatics - August 2022 469-474

Over the years, various machine learning techniques and

frameworks for ransomware detection have been developed

and tested. According to multiple research studies,

ransomware detection rates can exceed 96 percent when a

machine learning algorithm combined with a dynamic

analysis approach is used [9], [10]. The machine learning

algorithm can also be used to analyze network traffic for

Android malware, with detection rates exceeding 99

percent[11]. Due to this, the focus of this research is on

detecting ransomware attacks on a device machine; the

following are the primary contributions of this research:
 The detection of ransomware with dynamic analysis of

before and after the attacks takes place using different

types of machine learning classifiers.

 The comparison of accuracy between different machine

learning classifiers on finding the ransomware attacks

on the Windows 7 machine.

 The Random Forest and J48 classifiers have proven to

be the most accurate implementations in determining a

ransomware attack on a machine.

Omar et al. [12] discussed that a ransomware-affected

Windows 7 machine has distinct network dialogues
establishment characteristics. The infected machine will

connect to a remote attacker's network address, a command-

and-control server, and a payment or distribution website.

Due to this reason, we gathered a set of normal feature

behaviors on the Windows 7 machine prior to ransomware

infection and classified the ransomware-affected Windows 7

features using various classification approaches to determine

the attacks.

Previously published research by Takeuchi et al. [13] used

the Support Vector Machines (SVM) algorithm to detect

ransomware. SVM is a supervised machine learning
algorithm, and the approach aims to train the SVM to

recognize the API calls as ransomware detection features. The

researchers conducted a testbed study by analyzing 276 types

of ransomwares, including WannaCry, PETYA, and

CryptoLocker in the Cuckoo Sandbox. The SVM detection

rate has been shown to be higher than the findings by Rieck

et al. [14], with ransomware detection accuracy results of

97.48 percent and a missing rate of 1.64 percent, which is

lower than the reported missing rate Rieck et al. [14]. For the

unknown ransomware to be properly recognized, the SVM

approach implemented by Takeuchi et al. [13] thoroughly

examines the API call sequences, and the authors' vector
representations include the number of q-grams in the

execution logs. As a result, ransomware is less likely to go

undetected. As proposed by Takeuchi et al. [13], dynamic

analysis for ransomware detection tends to produce high

accuracy results as it is more difficult for the malware to hide

its behavior than to hide its underlying code.

A ransomware attack can also be detected using the

honeypot approach. The honeypot strategy entails network

administrators establishing phony computer resources that

can be used as decoy machines to detect suspicious behavior

[15]. The honeypot approach allows for real-time monitoring
of ransomware activity and attack methods. However, such an

approach could backfire if it is used as a launchpad to infect

other parts of the system. A honeypot approach is employed

by Pavithra and Selvakumara Samy [16], with a bogus folder

created to funnel the attack and monitor the changes in real-

time. Other researchers have developed tools and applications

to detect ransomware attacks based on this concept. Paybreak,

a specific mechanism for storing cryptographic encryption

keys in a key vault, is proposed by Kolodenker et al. [17]. It

is then used to decrypt the files and folders encrypted by

ransomware. SH-VARR is a framework developed by Al-

Dwairi et al. [18], which utilizes the link concept to protect

any XML document from being encrypted or deleted during

a ransomware attack.

Identifying different types of ransomwares is a difficult and

time-consuming task. It is becoming more difficult to
establish a solid overcoming method to deal with ransomware

attacks since ransomware creators are constantly upgrading

their products to avoid any new detection methods. To

overcome this, researchers employed Software-Defined

Networking (SDN) for ransomware detection using deep

packet tracing with POST and GET requests [19], [20]. Once

the ransomware is detected, the IP addresses of the servers

will be blacklisted by the determined servers in charge of

controlling the addresses. Alas, this countermeasure method

has a high false-positive rate of nearly 4.95 percent, which

makes it a cause of faulty and incorrectly constrained useful
services [20]. As a result, the network administrator must

check the victim's computer's network traffic and the server

for unlawful contact and prohibit the encryption key transfer.

A classification model can be implemented to analyze a

victim's computer traffic and to identify the encryption key

retrieval process. As such, EldeRAN is proposed by

Sgandurra et al. [21], which delivers a highly accurate

ransomware dynamic analysis using a machine learning

algorithm. The EldeRAN is designed to identify ransomware

infestations with a significantly higher true-positive and a low

false-positive rate. The results determined that the API calls
and the registry key are important in determining the most

relevant classification features. EldeRAN can also identify

unknown ransomware, with an average error rate of 2.4

percent.

II. MATERIALS AND METHOD

Fig. 2 describes five phases in conducting this research: the

literature review process, dataset collection, analysis of

relevant features for ransomware detection on Windows 7,
development of the classification model, model testing, and

comparing the experiment results.

Fig. 2 Components flow of the ransomware detection system

This research presents an in-depth analysis of the

ransomware attack detection using dynamic analysis and

applied various machine learning classifiers to classify the

ransomware attack: Random Forest, Naïve Bayes, J48,

Decision Table, and Hoeffding Trees. The classification

features are derived from comparing Windows 7 operating
system features before and after the ransomware outbreak,

Literature
review

Dataset
collection

Analysis of relevant

features for ransomware
detection on Windows 7

Comparing the

results of

experiment

Model
testing

Classification model
development

470

and the features change is observed and used to characterize

the ransomware attack on the Windows 7 machine.

A. Dataset Collection

The TON IoT Datasets [22] from the University of New

South Wales' (UNSW) were used to capture ransomware

attack features on Windows 7. A total of 132 ransomware

attack features that targeted Windows 7 machine have been

taken from the database. This data was acquired primarily
through a realistic and large-scale network built at the

Australian Defense Force Academy's Cyber Range and IoT

Labs (ADFA), Canberra's School of Engineering and

Information Technology (SEIT), UNSW. The dataset is

crucial for ensuring that the classification results are accurate.

On the other hand, the dataset assists the researchers in better

understanding ransomware features and explaining the

behavior of ransomware outbreaks on the Windows 7

operating system.

Fig. 3 Ransomware attacks testbed

The researcher then investigates the dataset further, with

the results used to classify potential ransomware attacks. The

testbed was configured with numerous virtual Windows 7

machines and a single attacker host to carry out the

ransomware attack, as illustrated in Fig. 3.

The Performance Monitor Tool was used to collect the data

that details the attack. The raw data was collected in a *.blg

file containing data for desk, process, processor, memory, and

network activities. The status of normal dataset features

before the ransomware attack has been labelled "Normal,"

while the successfully infected machine has been labelled

"Ransomware."

B. Machine Learning Approach for the Ransomware
Classification

Waikato Environment for Knowledge Analysis (WEKA)

tool is used to implement feature selection and machine

learning classification algorithms in this research. It is a well-

known Java-based machine learning software created at New

Zealand's Waikato University [23], [24]. WEKA can

implement a wide range of data mining tasks, including data

preprocessing, clustering, classification, regression,

visualization, and feature selection [25]–[27].

The Windows 7 features listed in Table 1 are categorized

based on key attributes and used to train the classification
model. The collected features are optimized using feature

optimization to ensure accurate ransomware attack

classification [28]. This approach streamlines the ransomware

classification process by reducing training and testing time

during the classification. Irrelevant and redundant traits from

the dataset that do not add to the classification model's

accuracy are determined and eliminated using the feature

selection method [29]. The total number of selected features

is reduced from 132 to 77. The reduction is based on the fact

that certain features are not significantly changed after the

ransomware attack.

The dataset with the selected features will be used to train
the ransomware classification model and to identify the

ransomware attack during the testing phase. Thus, the dataset

is divided into two portions at a ratio of 70:30.

TABLE I
WINDOWS 7 FEATURES

Features

Processor_DPC_Rate Process_pct_User_Time

Processor_pct_idle_Time Process_Virtual_Bytes_Peak
Processor_pct_interupt_Time Process_Page_Files_Bytes_Peak
Processor_pct_User_Time Process_IO_Other_Bytes_sec
Processor_pct_C1_Time Process_Privates_Bytes
Processor_pct_Processor_Time Process_IO_Write_Bytes_sec
Processor_C1_transition_sec Process_Virtual_Bytes
Processor_pct_DPC_Time Process_pct_Processor_Time
Processor_pct_Privilleged_Time Process_Pool_Nonpaged_Bytes

Processor_DPCs_Queued_sec Process_Working_set
Processor_interupts_sec Process_Page_Faults_sec
Process_pool_Paged_bytes Process_IO_Other_Operations_sec
Process_IO Read_Operations_sec Process_IO_Data_Operations_sec
Process_Handle_count Process_Thread_Count
Network_I(Intel[R]_Pro_1000MT)_Bytes_Received_sec Process_pct_privilleged_time
Network_I(Intel[R]_Pro_1000MT)_Bytes_Sent_sec Process_IO_Data_Bytes_sec
Network_I(Intel[R]_Pro_1000MT)_Bytes_Total_sec Process_IO_Read_Bytes_ sec
Network_I(Intel[R]_Pro_1000MT)_packets_Received_sec Memory__System_Code_Resident_Bytes

Network_I(Intel[R]_Pro_1000MT)_packets_Sent_sec Memory_Available_Bytes
Network_I(Intel[R]_Pro_1000MT)_Packets_sec Memory_Commit_Limit
Network_I(Intel[R]_Pro_1000MT)_Packets_Sent_sec Memory_Transition_Pages_RePurposed_sec
Network_I(Intel[R]_Pro_1000MT)_Peackets_Received_sec Memory_Pages_Output_sec
Memory_Pool_Page_bytes Memory_Page_Reads_sec

471

Memory_Free&Zero_Page_List_bytes Memory_Demands_Zero_Faults_sec

Memory_Caches_bytes_Peak Memory_Available_Kbytes
Process_Working_Set_Peak Memory_Pages_sec
Process_IO_WriteOperations_sec Memory_Cache_Bytes
Process_Page_File_bytes Memory_Pool_Nonpages_bytes
Memory_Pool_Paged_Allocs Memory_Page_Faults_sec
Memory_Pool_Nonpaged_Allocs Memory_Transition_Faults_sec
Memory_pct_Commited_Bytes_In_Use Memory_System_Cache_Resident_Bytes
Memory_Free_System_Page_able_Entries Memory_Standby_Cache_Reserves_Bytes

Memory_Available_Mbytes Memory_Page_Writes_Sec
Memory_Modified_Page_List_Bytes Memory_Standby_Cache_Core_Bytes
Memory_Cache_Faults_sec Memory_System_Driver_Resident_Bytes
Memory_Committed_Bytes Memory_Standby_Cache_Normal_Priority_Bytes
Memory_System_Driver_total_Bytes Memory_Pool_Paged_Resident_Bytes
Memory_Pages_Input_sec Memory_Write_Copies_sec
Features
Processor_DPC_Rate Process_pct_User_Time

Processor_pct_idle_Time Process_Virtual_Bytes_Peak
Processor_pct_interupt_Time Process_Page_Files_Bytes_Peak
Processor_pct_User_Time Process_IO_Other_Bytes_sec
Processor_pct_C1_Time Process_Privates_Bytes
Processor_pct_Processor_Time Process_IO_Write_Bytes_sec
Processor_C1_transition_sec Process_Virtual_Bytes
Processor_pct_DPC_Time Process_pct_Processor_Time
Processor_pct_Privilleged_Time Process_Pool_Nonpaged_Bytes
Processor_DPCs_Queued_sec Process_Working_set

Processor_interupts_sec Process_Page_Faults_sec
Process_pool_Paged_bytes Process_IO_Other_Operations_sec
Process_IO Read_Operations_sec Process_IO_Data_Operations_sec
Process_Handle_count Process_Thread_Count
Network_I(Intel[R]_Pro_1000MT)_Bytes_Received_sec Process_pct_privilleged_time
Network_I(Intel[R]_Pro_1000MT)_Bytes_Sent_sec Process_IO_Data_Bytes_sec
Network_I(Intel[R]_Pro_1000MT)_Bytes_Total_sec Process_IO_Read_Bytes_ sec
Network_I(Intel[R]_Pro_1000MT)_packets_Received_sec Memory__System_Code_Resident_Bytes

Network_I(Intel[R]_Pro_1000MT)_packets_Sent_sec Memory_Available_Bytes
Network_I(Intel[R]_Pro_1000MT)_Packets_sec Memory_Commit_Limit
Network_I(Intel[R]_Pro_1000MT)_Packets_Sent_sec Memory_Transition_Pages_RePurposed_sec
Network_I(Intel[R]_Pro_1000MT)_Peackets_Received_sec Memory_Pages_Output_sec
Memory_Pool_Page_bytes Memory_Page_Reads_sec
Memory_Free&Zero_Page_List_bytes Memory_Demands_Zero_Faults_sec
Memory_Caches_bytes_Peak Memory_Available_Kbytes
Process_Working_Set_Peak Memory_Pages_sec

Process_IO_WriteOperations_sec Memory_Cache_Bytes
Process_Page_File_bytes Memory_Pool_Nonpages_bytes
Memory_Pool_Paged_Allocs Memory_Page_Faults_sec
Memory_Pool_Nonpaged_Allocs Memory_Transition_Faults_sec
Memory_pct_Commited_Bytes_In_Use Memory_System_Cache_Resident_Bytes
Memory_Free_System_Page_able_Entries Memory_Standby_Cache_Reserves_Bytes
Memory_Available_Mbytes Memory_Page_Writes_Sec
Memory_Modified_Page_List_Bytes Memory_Standby_Cache_Core_Bytes

Memory_Cache_Faults_sec Memory_System_Driver_Resident_Bytes
Memory_Committed_Bytes Memory_Standby_Cache_Normal_Priority_Bytes
Memory_System_Driver_total_Bytes Memory_Pool_Paged_Resident_Bytes
Memory_Pages_Input_sec Memory_Write_Copies_sec

III. RESULT AND DISCUSSION

The supervised machine learning approach was used in this
research as it provides a promising outcome by reducing

errors [30], [31]. This research compares the performance of

various notable classifiers such as Random Forest, Naive

Bayes, J48, Decision Table, and Hoeffding Trees using five

different classifiers. The accuracy percentage, false positive

rate (FPR), precision, recall, and the F-Measure metrics are

utilized to evaluate the research. Table 2 lists all five

classifiers' results in the testing phase.

TABLE II
PERFORMANCE OF EACH CLASSIFIER

 Classifier Accuracy

(%)

FPR Precision

(%)

Recall

(%)

F-

Measure

(%)

Random

Forest

99.74 0.26 99.70 99.70 99.70

Naïve Bayes 99.48 0.52 99.50 99.50 99.50

J48 99.74 0.26 99.70 99.70 99.70

Decision

Table

98.70 1.30 98.70 98.70 98.70

Hoeffding

Tree

99.48 0.52 99.50 99.50 99.50

472

Compared to the other classifiers, Random Forest and J48

hold the highest accuracy of 99.74 percent. Decision Table,

on the other hand, had the lowest accuracy percentage of

98.70 percent. The results indicate that the Random Forest

and J48 classifiers accurately identify ransomware outbreaks.

The high accuracy percentage in both Random Forest and J48

classifiers is backed up by a high precision percentage of

97.70 percent. Furthermore, the high accuracy percentage

obtained in the result may indicate that the feature selection

strategy used in this research had an important part in

producing superior results.

A. Confusion Matrix

The confusion matrix is used to summarize the

performance of the classification model. Table 3 presents the

results of two types of classification: normal and ransomware.

For all classifiers, the result will be labeled as "ransomware"

when the classification model anticipates the presence of

ransomware activity and vice versa.

J48 and Random Forest outperformed other classifiers in
ransomware detection when all 82 actual ransomwares were

classified as "ransomware". In terms of false predictions, both

J48 and Random Forest classifiers hold the lowest number

with only 1 case. Therefore, the J48 and Random Forest

classifiers are more accurate in detecting ransomware attacks

than the other classifiers.

TABLE III
CONFUSION MATRIX OF EACH CLASSIFIER

Classifier Actual

Classification

Classified

"Normal"

Classified

"Ransomware"

Random

Forest

Actual normal 301 1

Actual

ransomware

0 82

Naïve Bayes Actual normal 301 1

Actual

ransomware

1 81

J48 Actual normal 301 1

Actual

ransomware

0 82

Decision

Table

Actual normal 300 2

Actual

ransomware

3 79

Hoeffding

Tree

Actual normal 301 1

Actual

ransomware

1 81

B. Receiver Operating Characteristics (ROC) Curve

In addition to the performance matrix, the ROC curve for

each machine learning classifier was calculated in this

research. True Positive Rate (TPR) was selected as the

detection rate that accurately classified the ransomware attack,

whereas FPR was chosen as the detection rate that incorrectly

classified the normal cases as a ransomware attack. The ROC

curve is shown in Fig. 4.

Fig. 4 ROC curve

The horizontal axis of Fig. 4 depicts the error detection rate,

whereas the vertical axis depicts the detection rate. The four

lines represent the ROC curves of the machine learning

classifier. The ROC curves are difficult to compare under the

same conditions. As a result, the bottom portion of the curve

was used to calculate the recognition accuracy (AUC). The

AUC results can be used to establish if the classifiers are

effective in detecting ransomware or not. There are two color

ranges in the class. The perfect classification is represented by

a range of 0.5 to 1, whereas a range of 0 to 0.5 represents an

inadequate classification. According to the AUC results in
Table 4, Random Forest and J48 classifiers possess the

highest AUC values of 0.997. The outcome implies that both

classifiers performed admirably. The ROC curve and AUC

values given in this research demonstrated that all classifiers

produced compelling and accurate results in detecting

ransomware outbreaks.

TABLE IV
AUC RESULTS

Classifier AUC Prediction

Random Forest 0.997 Perfect prediction
Naïve Bayes 0.993 Perfect prediction

J48 0.997 Perfect prediction
Decision Table 0.987 Perfect prediction
Hoeffding Tree 0.992 Perfect prediction

Additionally, Table 5 compares the time taken to train the

classification model. The result shows that the Naïve Bayes

classifier holds the fastest training time. Random Forest and

J48 came in second and third, respectively, with the

Hoeffding Tree trailing by a small margin. The result also

suggests that the Decision Tree takes the longest time to train
the classification model.

TABLE V

TIME TAKEN TO BUILD MODEL (SECONDS)

Classifier AUC

Random Forest 0.07
Naïve Bayes 0.05

J48 0.07
Decision Table 0.46
Hoeffding Tree 0.09

IV. CONCLUSION

This research examined the performance of five machine

learning classifiers in detecting ransomware attacks: Random

Forest, Naïve Bayes, J48, Decision Table, and Hoeffding

Trees. A dynamic analysis approach that implements machine

learning classifiers is used in this research, and the

ransomware attacks were accurately classified according to

the selected features. The research analyses the sample dataset
and the Windows 7 engine to monitor changes in the features

before and after the ransomware attack. The experiment's

findings demonstrated that the Random Forest and J48

classifiers had the highest percentage of accuracy in detecting

a ransomware attack.

Based on the findings, the following conclusions can be

drawn: The results show that the Random Forest and J48

classifier with dynamic analysis can detect ransomware

attacks with remarkable performance. The findings highlight

that the Random Forest tree size of 77 has produced a high

accuracy of 97.74 percent, a high ROC of 99.7 percent, and a

473

low FPR of 0.26 with just 0.07 seconds of dataset training

time. The reduction of classification features from 78 to 191

positively improved the ransomware detection rate. The

Random Forest classifier performed similarly to J48 in all

tests, resulting in the most effective solution to detect

ransomware attacks.

ACKNOWLEDGMENT

The researchers thank the Universiti Malaysia Pahang for

the financial support under the UMP Internal Research Grant

RDU200317. This support is gratefully acknowledged.

REFERENCES

[1] J. Zhu, J. Jang-Jaccard, A. Singh, I. Welch, H. AI-Sahaf, and S.

Camtepe, "A few-shot meta-learning based Siamese neural network

using entropy features for ransomware classification," Computers and

Security, vol. 117, Jun. 2022, doi: 10.1016/J.COSE.2022.102691.

[2] M. Mohd Azuwan Efendy, A. R. Mohd Faizal, and A. R. Munirah,

"Malware Detection System Using Cloud Sandbox, Machine

Learning," International Journal of Software Engineering and

Computer Systems, vol. 8, no. 2, pp. 25–32, Jul. 2022, doi:

10.15282/IJSECS.8.2.2022.3.0100.

[3] R. Almohaini, I. Almomani, and A. Alkhayer, "Hybrid-Based

Analysis Impact on Ransomware Detection for Android Systems,"

Applied Sciences, vol. 11, no. 22, p. 10976, Nov. 2021, doi:

10.3390/APP112210976.

[4] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, "Effective and

Efficient Hybrid Android Malware Classification Using Pseudo-Label

Stacked Auto-Encoder," Journal of Network and Systems

Management, vol. 30, p. 22, 2022, doi: 10.1007/s10922-021-09634-4.

[5] I. Kara and M. Aydos, "The rise of ransomware: Forensic analysis for

windows based ransomware attacks," Expert Systems with

Applications, vol. 190, p. 116198, Mar. 2022, doi:

10.1016/J.ESWA.2021.116198.

[6] Y.-T. HuangID, Y. S. Sun, and M. Chang Chen, "TagSeq: Malicious

behavior discovery using dynamic analysis," PLOS ONE, vol. 17, no.

5, p. e0263644, May 2022, doi: 10.1371/JOURNAL.PONE.0263644.

[7] G. McDonald, P. Papadopoulos, N. Pitropakis, J. Ahmad, and W. J.

Buchanan, "Ransomware: Analysing the Impact on Windows Active

Directory Domain Services," Sensors 2022, Vol. 22, Page 953, vol. 22,

no. 3, p. 953, Jan. 2022, doi: 10.3390/S22030953.

[8] Statista Research Department, "Global ransomware victimization rate

since 2018 to 2021," Statista Research Department.

https://www.statista.com/statistics/204457/businesses-ransomware-

attack-rate/ (accessed Jul. 18, 2022).

[9] J. Singh and J. Singh, "Assessment of supervised machine learning

algorithms using dynamic API calls for malware detection,"

International Journal of Computers and Applications, vol. 44, no. 3,

pp. 270–277, 2022, doi: 10.1080/1206212X.2020.1732641.

[10] J. Palša et al., "MLMD-A Malware-Detecting Antivirus Tool Based

on the XGBoost Machine Learning Algorithm," Applied Sciences, vol.

12, no. 13, p. 6672, Jul. 2022, doi: 10.3390/APP12136672.

[11] J. Mohamad Arif, M. F. Ab Razak, S. R. Tuan Mat, S. Awang, N. S.

N. Ismail, and A. Firdaus, "Android mobile malware detection using

fuzzy AHP," Journal of Information Security and Applications, vol.

61, p. 102929, Sep. 2021, doi: 10.1016/J.JISA.2021.102929.

[12] Omar M.K. Alhawi, James Baldwin, and A. Dehghantanha,

"Leveraging Machine Learning Techniques for Windows

Ransomware Network Traffic Detection," in Cyber Threat Intelligence.

Advances in Information Security, vol. 70, A. Dehghantanha, M. Conti,

and T. Dargahi, Eds. Springer, Cham, 2018. doi: 10.1007/978-3-319-

73951-9_5.

[13] Y. Takeuchi, K. Sakai, and S. Fukumoto, "Detecting ransomware

using support vector machines," in ICPP '18: Proceedings of the 47th

International Conference on Parallel Processing Companion, Aug.

2018, vol. 1. doi: 10.1145/3229710.3229726.

[14] K. Rieck, P. Trinius, C. Willems, and T. Holz, "Automatic analysis of

malware behavior using machine learning," Journal of Computer

Security, vol. 19, no. 4, pp. 639–668, Jan. 2011, doi: 10.3233/JCS-

2010-0410.

[15] S. Touch and J.-N. Colin, "A Comparison of an Adaptive Self-

Guarded Honeypot with Conventional Honeypots," Applied Sciences,

vol. 12, no. 10, p. 5224, May 2022, doi: 10.3390/APP12105224.

[16] J. Pavithra and S. Selvakumara Samy, "A Comparative Study on

Detection of Malware and Benign on the Internet Using Machine

Learning Classifiers," Mathematical Problems in Engineering, vol.

2022, pp. 1–8, Jun. 2022, doi: 10.1155/2022/4893390.

[17] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, "PayBreak:

Defense Against Cryptographic Ransomware," in Proceedings of the

2017 ACM on Asia Conference on Computer and Communications

Security, 2017, pp. 599–611. doi: 10.1145/3052973.3053035.

[18] M. Al-Dwairi, A. S. Shatnawi, O. Al-Khaleel, and B. Al-Duwairi,

"Ransomware-Resilient Self-Healing XML Documents," Future

Internet, vol. 14, no. 4, p. 115, Apr. 2022, doi: 10.3390/FI14040115.

[19] H.-M. Chuang, F. Liu, and C.-H. Tsai, "Early Detection of Abnormal

Attacks in Software-Defined Networking Using Machine Learning

Approaches," Symmetry (Basel), vol. 14, no. 6, p. 1178, Jun. 2022,

doi: 10.3390/SYM14061178.

[20] G. Cusack, O. Michel, and E. Keller, "Machine Learning-Based

Detection of Ransomware Using SDN," in Proceedings of the 2018

ACM International Workshop on Security in Software Defined

Networks & Network Function Virtualization, 2018, vol. 18, pp. 1–6.

doi: 10.1145/3180465.3180467.

[21] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu,

"Automated Dynamic Analysis of Ransomware: Benefits, Limitations

and use for Detection," Cryptography and Security, arXiv 2016,

Accessed: Jul. 18, 2022. [Online]. Available:

https://arxiv.org/abs/1609.03020v1

[22] "The TON_IoT Datasets | UNSW Research," UNSW Canberra at

ADFA, 2021. https://research.unsw.edu.au/projects/toniot-datasets

(accessed Jul. 18, 2022).

[23] S. Madugula, S. Kiran, V. Chandra Shekhar Rao, S. Venkatramulu, M.

S. B. Phridviraj, and S. Pratapagiri, "Advanced Machine Learning

Scenarios for Real World Applications using Weka Platform,"

Proceedings of the International Conference on Electronics and

Renewable Systems, ICEARS 2022, pp. 1215–1218, 2022, doi:

10.1109/ICEARS53579.2022.9752368.

[24] N. Thushika and S. Premaratne, "A Data Mining Approach for

Parameter Optimization in Weather Prediction," International Journal

of Data Science, vol. 1, no. 1, pp. 1–13, Apr. 2020, doi:

10.18517/IJODS.1.1.1-13.2020.

[25] A. A. R. Melvin et al., "Dynamic malware attack dataset leveraging

virtual machine monitor audit data for the detection of intrusions in

cloud," Transactions on Emerging Telecommunications Technologies,

vol. 33, no. 4, p. e4287, Apr. 2022, doi: 10.1002/ETT.4287.

[26] J. Pattee, S. M. Anik, and B. K. Lee, "Performance Monitoring

Counter Based Intelligent Malware Detection and Design

Alternatives," IEEE Access, vol. 10, pp. 28685–28692, 2022, doi:

10.1109/ACCESS.2022.3157812.

[27] D. W. Fernando and N. Komninos, "FeSA: Feature selection

architecture for ransomware detection under concept drift," Computers

& Security, vol. 116, p. 102659, May 2022, doi:

10.1016/J.COSE.2022.102659.

[28] M. Sulistiyono, L. A. Wirasakti, and Y. Pristyanto, "The Effect of

Adaptive Synthetic and Information Gain on C4.5 and Naive Bayes in

Imbalance Class Dataset," International Journal of Advanced Science

Computing and Engineering, vol. 4, no. 1, pp. 1–11, Jan. 2022, doi:

10.30630/IJASCE.4.1.70.

[29] U. Ahmed, J. C. W. Lin, and G. Srivastava, "Mitigating adversarial

evasion attacks of ransomware using ensemble learning," Computers

and Electrical Engineering, vol. 100, p. 107903, May 2022, doi:

10.1016/J.COMPELECENG.2022.107903

[30] S. A. EL_Rahman, R. A. AlRashed, D. N. AlZunaytan, N. J. AlHarbi,

S. A. AlThubaiti, and M. K. AlHejeelan, "Chronic Diseases System

Based on Machine Learning Techniques," International Journal of

Data Science, vol. 1, no. 1, pp. 18–36, Apr. 2020, doi:

10.18517/IJODS.1.1.18-36.2020.

[31] N. M. Hatta, Z. A. Shah, and S. Kasim, "Evaluate the Performance of

SVM Kernel Functions for Multiclass Cancer Classification,"

International Journal of Data Science, vol. 1, no. 1, pp. 37–41, May

2020, doi: 10.18517/IJODS.1.1.37-41.2020.

474

