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Abstract— Ransomware attacks are also rising in this growing technological advancement world. This threat often affects the finance 

of individuals, organizations, and financial sectors. To effectively detect and block these ransomware threats, the dynamic analysis 

strategy was proposed and carried out as the approach of this research. This paper aims to detect ransomware attacks with dynamic 

analysis and classify the attacks using various machine learning classifiers: Random Forest, Naïve Bayes, J48, Decision Table, and 

Hoeffding Trees. The TON IoT Datasets from the University of New South Wales (UNSW) were used to capture ransomware attack 

features on Windows 7. During the experiment, a testbed was configured with numerous virtual Windows 7 machines and a single 

attacker host to carry out the ransomware attack. Seventy-seven classification features are selected based on the changes before and 

after the attack. Random Forest and J48 classifiers outperformed other classifiers with the highest accuracy results of 99.74%. The 

confusion matrix highlights that both Random Forest and J48 classifiers can accurately classify the ransomware attacks with the AUC 

value of 0.997, respectively. Our experimental result also suggests that dynamic analysis with a machine learning classifier is an effective 

solution to detect ransomware with an accuracy percentage exceeding 98%.  
 
Keywords— Malware; ransomware detection; machine learning; classifier. 

  
Manuscript received 22 Dec. 2021; revised 29 Jan. 2022; accepted 10 Apr. 2022. Date of publication 31 Aug. 2022. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

 
 

 

I. INTRODUCTION 

Currently, attackers employ sophisticated methods to 

create new types of profitable malware. Ransomware is a type 

of cyber-attack that has recently gained popularity. The goal 

of this malware is to encrypt user files, restrict access to them, 

and then demand a ransom for the decryption key [1], [2]. 

Ransomware has become a serious menace to the computing 

sector, necessitating fast action to avoid financial and moral 

extortion. As a result, a new technique to detect and prevent 

this type of assault is critical. Dynamic analysis, static 

analysis, and a hybrid system that combined dynamic and 
static analysis were the three types of detection approaches 

used [3]–[5]. Most previous detection methods relied on a 

time-consuming but feasible and effective procedure known 

as dynamic analysis [6], [7]. 

Ransomware attacks first appeared in September 2013 

using Rivest–Shamir–Adleman (RSA) public-key 

cryptography. When more than 1,400,000 Kaspersky users 

across numerous industries were targeted in 2016, it escalated 

into a catastrophic problem. Since the ransomware 

"WannaCry" infected over 400,000 machines across 150 

countries in just one day in 2017, researchers have 

concentrated their efforts on ransomware detection. Despite 

this, the number of ransomware victims among enterprises 

globally has climbed during 2018, reaching a high of 68.5 
percent in 2021 [8]. Figure 1 depicts the global business 

victimization rate from 2018 to 2021. 

 

 
Fig. 1  Number of ransomware victimization in businesses worldwide 
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Over the years, various machine learning techniques and 

frameworks for ransomware detection have been developed 

and tested. According to multiple research studies, 

ransomware detection rates can exceed 96 percent when a 

machine learning algorithm combined with a dynamic 

analysis approach is used [9], [10]. The machine learning 

algorithm can also be used to analyze network traffic for 

Android malware, with detection rates exceeding 99 

percent[11]. Due to this, the focus of this research is on 

detecting ransomware attacks on a device machine; the 

following are the primary contributions of this research: 
 The detection of ransomware with dynamic analysis of 

before and after the attacks takes place using different 

types of machine learning classifiers. 

 The comparison of accuracy between different machine 

learning classifiers on finding the ransomware attacks 

on the Windows 7 machine. 

 The Random Forest and J48 classifiers have proven to 

be the most accurate implementations in determining a 

ransomware attack on a machine. 

Omar et al. [12] discussed that a ransomware-affected 

Windows 7 machine has distinct network dialogues 
establishment characteristics. The infected machine will 

connect to a remote attacker's network address, a command-

and-control server, and a payment or distribution website. 

Due to this reason, we gathered a set of normal feature 

behaviors on the Windows 7 machine prior to ransomware 

infection and classified the ransomware-affected Windows 7 

features using various classification approaches to determine 

the attacks.  

Previously published research by Takeuchi et al. [13] used 

the Support Vector Machines (SVM) algorithm to detect 

ransomware. SVM is a supervised machine learning 
algorithm, and the approach aims to train the SVM to 

recognize the API calls as ransomware detection features. The 

researchers conducted a testbed study by analyzing 276 types 

of ransomwares, including WannaCry, PETYA, and 

CryptoLocker in the Cuckoo Sandbox. The SVM detection 

rate has been shown to be higher than the findings by Rieck 

et al. [14], with ransomware detection accuracy results of 

97.48 percent and a missing rate of 1.64 percent, which is 

lower than the reported missing rate Rieck et al. [14]. For the 

unknown ransomware to be properly recognized, the SVM 

approach implemented by Takeuchi et al. [13] thoroughly 

examines the API call sequences, and the authors' vector 
representations include the number of q-grams in the 

execution logs. As a result, ransomware is less likely to go 

undetected. As proposed by Takeuchi et al. [13], dynamic 

analysis for ransomware detection tends to produce high 

accuracy results as it is more difficult for the malware to hide 

its behavior than to hide its underlying code. 

A ransomware attack can also be detected using the 

honeypot approach. The honeypot strategy entails network 

administrators establishing phony computer resources that 

can be used as decoy machines to detect suspicious behavior 

[15]. The honeypot approach allows for real-time monitoring 
of ransomware activity and attack methods. However, such an 

approach could backfire if it is used as a launchpad to infect 

other parts of the system. A honeypot approach is employed 

by Pavithra and Selvakumara Samy [16], with a bogus folder 

created to funnel the attack and monitor the changes in real-

time. Other researchers have developed tools and applications 

to detect ransomware attacks based on this concept. Paybreak, 

a specific mechanism for storing cryptographic encryption 

keys in a key vault, is proposed by Kolodenker et al. [17]. It 

is then used to decrypt the files and folders encrypted by 

ransomware. SH-VARR is a framework developed by Al-

Dwairi et al. [18], which utilizes the link concept to protect 

any XML document from being encrypted or deleted during 

a ransomware attack. 

Identifying different types of ransomwares is a difficult and 

time-consuming task. It is becoming more difficult to 
establish a solid overcoming method to deal with ransomware 

attacks since ransomware creators are constantly upgrading 

their products to avoid any new detection methods. To 

overcome this, researchers employed Software-Defined 

Networking (SDN) for ransomware detection using deep 

packet tracing with POST and GET requests [19], [20]. Once 

the ransomware is detected, the IP addresses of the servers 

will be blacklisted by the determined servers in charge of 

controlling the addresses. Alas, this countermeasure method 

has a high false-positive rate of nearly 4.95 percent, which 

makes it a cause of faulty and incorrectly constrained useful 
services [20]. As a result, the network administrator must 

check the victim's computer's network traffic and the server 

for unlawful contact and prohibit the encryption key transfer.  

A classification model can be implemented to analyze a 

victim's computer traffic and to identify the encryption key 

retrieval process. As such, EldeRAN is proposed by 

Sgandurra et al. [21], which delivers a highly accurate 

ransomware dynamic analysis using a machine learning 

algorithm. The EldeRAN is designed to identify ransomware 

infestations with a significantly higher true-positive and a low 

false-positive rate. The results determined that the API calls 
and the registry key are important in determining the most 

relevant classification features. EldeRAN can also identify 

unknown ransomware, with an average error rate of 2.4 

percent. 

II. MATERIALS AND METHOD 

Fig. 2 describes five phases in conducting this research: the 

literature review process, dataset collection, analysis of 

relevant features for ransomware detection on Windows 7, 
development of the classification model, model testing, and 

comparing the experiment results. 

 

 
Fig. 2  Components flow of the ransomware detection system 

 

This research presents an in-depth analysis of the 

ransomware attack detection using dynamic analysis and 

applied various machine learning classifiers to classify the 

ransomware attack: Random Forest, Naïve Bayes, J48, 

Decision Table, and Hoeffding Trees. The classification 

features are derived from comparing Windows 7 operating 
system features before and after the ransomware outbreak, 
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and the features change is observed and used to characterize 

the ransomware attack on the Windows 7 machine.  

A. Dataset Collection 

The TON IoT Datasets [22] from the University of New 

South Wales' (UNSW) were used to capture ransomware 

attack features on Windows 7. A total of 132 ransomware 

attack features that targeted Windows 7 machine have been 

taken from the database. This data was acquired primarily 
through a realistic and large-scale network built at the 

Australian Defense Force Academy's Cyber Range and IoT 

Labs (ADFA), Canberra's School of Engineering and 

Information Technology (SEIT), UNSW. The dataset is 

crucial for ensuring that the classification results are accurate. 

On the other hand, the dataset assists the researchers in better 

understanding ransomware features and explaining the 

behavior of ransomware outbreaks on the Windows 7 

operating system.  

 

 
Fig. 3  Ransomware attacks testbed 

 

The researcher then investigates the dataset further, with 

the results used to classify potential ransomware attacks. The 

testbed was configured with numerous virtual Windows 7 

machines and a single attacker host to carry out the 

ransomware attack, as illustrated in Fig. 3.  

The Performance Monitor Tool was used to collect the data 

that details the attack. The raw data was collected in a *.blg 

file containing data for desk, process, processor, memory, and 

network activities. The status of normal dataset features 

before the ransomware attack has been labelled "Normal," 

while the successfully infected machine has been labelled 

"Ransomware." 

B. Machine Learning Approach for the Ransomware 
Classification 

Waikato Environment for Knowledge Analysis (WEKA) 

tool is used to implement feature selection and machine 

learning classification algorithms in this research. It is a well-

known Java-based machine learning software created at New 

Zealand's Waikato University [23], [24]. WEKA can 

implement a wide range of data mining tasks, including data 

preprocessing, clustering, classification, regression, 

visualization, and feature selection [25]–[27]. 

The Windows 7 features listed in Table 1 are categorized 

based on key attributes and used to train the classification 
model. The collected features are optimized using feature 

optimization to ensure accurate ransomware attack 

classification [28]. This approach streamlines the ransomware 

classification process by reducing training and testing time 

during the classification. Irrelevant and redundant traits from 

the dataset that do not add to the classification model's 

accuracy are determined and eliminated using the feature 

selection method [29]. The total number of selected features 

is reduced from 132 to 77. The reduction is based on the fact 

that certain features are not significantly changed after the 

ransomware attack.  

The dataset with the selected features will be used to train 
the ransomware classification model and to identify the 

ransomware attack during the testing phase. Thus, the dataset 

is divided into two portions at a ratio of 70:30. 

 

TABLE I 
WINDOWS 7 FEATURES 

Features 

Processor_DPC_Rate Process_pct_User_Time 

Processor_pct_idle_Time Process_Virtual_Bytes_Peak 
Processor_pct_interupt_Time Process_Page_Files_Bytes_Peak 
Processor_pct_User_Time Process_IO_Other_Bytes_sec 
Processor_pct_C1_Time Process_Privates_Bytes 
Processor_pct_Processor_Time Process_IO_Write_Bytes_sec 
Processor_C1_transition_sec Process_Virtual_Bytes 
Processor_pct_DPC_Time Process_pct_Processor_Time 
Processor_pct_Privilleged_Time Process_Pool_Nonpaged_Bytes 

Processor_DPCs_Queued_sec Process_Working_set 
Processor_interupts_sec Process_Page_Faults_sec 
Process_pool_Paged_bytes Process_IO_Other_Operations_sec 
Process_IO Read_Operations_sec Process_IO_Data_Operations_sec 
Process_Handle_count Process_Thread_Count 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Received_sec Process_pct_privilleged_time 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Sent_sec Process_IO_Data_Bytes_sec 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Total_sec Process_IO_Read_Bytes_ sec 
Network_I(Intel[R]_Pro_1000MT)_packets_Received_sec Memory__System_Code_Resident_Bytes 

Network_I(Intel[R]_Pro_1000MT)_packets_Sent_sec Memory_Available_Bytes 
Network_I(Intel[R]_Pro_1000MT)_Packets_sec Memory_Commit_Limit 
Network_I(Intel[R]_Pro_1000MT)_Packets_Sent_sec Memory_Transition_Pages_RePurposed_sec 
Network_I(Intel[R]_Pro_1000MT)_Peackets_Received_sec Memory_Pages_Output_sec 
Memory_Pool_Page_bytes Memory_Page_Reads_sec 
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Memory_Free&Zero_Page_List_bytes Memory_Demands_Zero_Faults_sec 

Memory_Caches_bytes_Peak Memory_Available_Kbytes 
Process_Working_Set_Peak Memory_Pages_sec 
Process_IO_WriteOperations_sec Memory_Cache_Bytes 
Process_Page_File_bytes Memory_Pool_Nonpages_bytes 
Memory_Pool_Paged_Allocs Memory_Page_Faults_sec 
Memory_Pool_Nonpaged_Allocs Memory_Transition_Faults_sec 
Memory_pct_Commited_Bytes_In_Use Memory_System_Cache_Resident_Bytes 
Memory_Free_System_Page_able_Entries Memory_Standby_Cache_Reserves_Bytes 

Memory_Available_Mbytes Memory_Page_Writes_Sec 
Memory_Modified_Page_List_Bytes Memory_Standby_Cache_Core_Bytes 
Memory_Cache_Faults_sec Memory_System_Driver_Resident_Bytes 
Memory_Committed_Bytes Memory_Standby_Cache_Normal_Priority_Bytes 
Memory_System_Driver_total_Bytes Memory_Pool_Paged_Resident_Bytes 
Memory_Pages_Input_sec Memory_Write_Copies_sec 
Features  
Processor_DPC_Rate Process_pct_User_Time 

Processor_pct_idle_Time Process_Virtual_Bytes_Peak 
Processor_pct_interupt_Time Process_Page_Files_Bytes_Peak 
Processor_pct_User_Time Process_IO_Other_Bytes_sec 
Processor_pct_C1_Time Process_Privates_Bytes 
Processor_pct_Processor_Time Process_IO_Write_Bytes_sec 
Processor_C1_transition_sec Process_Virtual_Bytes 
Processor_pct_DPC_Time Process_pct_Processor_Time 
Processor_pct_Privilleged_Time Process_Pool_Nonpaged_Bytes 
Processor_DPCs_Queued_sec Process_Working_set 

Processor_interupts_sec Process_Page_Faults_sec 
Process_pool_Paged_bytes Process_IO_Other_Operations_sec 
Process_IO Read_Operations_sec Process_IO_Data_Operations_sec 
Process_Handle_count Process_Thread_Count 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Received_sec Process_pct_privilleged_time 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Sent_sec Process_IO_Data_Bytes_sec 
Network_I(Intel[R]_Pro_1000MT)_Bytes_Total_sec Process_IO_Read_Bytes_ sec 
Network_I(Intel[R]_Pro_1000MT)_packets_Received_sec Memory__System_Code_Resident_Bytes 

Network_I(Intel[R]_Pro_1000MT)_packets_Sent_sec Memory_Available_Bytes 
Network_I(Intel[R]_Pro_1000MT)_Packets_sec Memory_Commit_Limit 
Network_I(Intel[R]_Pro_1000MT)_Packets_Sent_sec Memory_Transition_Pages_RePurposed_sec 
Network_I(Intel[R]_Pro_1000MT)_Peackets_Received_sec Memory_Pages_Output_sec 
Memory_Pool_Page_bytes Memory_Page_Reads_sec 
Memory_Free&Zero_Page_List_bytes Memory_Demands_Zero_Faults_sec 
Memory_Caches_bytes_Peak Memory_Available_Kbytes 
Process_Working_Set_Peak Memory_Pages_sec 

Process_IO_WriteOperations_sec Memory_Cache_Bytes 
Process_Page_File_bytes Memory_Pool_Nonpages_bytes 
Memory_Pool_Paged_Allocs Memory_Page_Faults_sec 
Memory_Pool_Nonpaged_Allocs Memory_Transition_Faults_sec 
Memory_pct_Commited_Bytes_In_Use Memory_System_Cache_Resident_Bytes 
Memory_Free_System_Page_able_Entries Memory_Standby_Cache_Reserves_Bytes 
Memory_Available_Mbytes Memory_Page_Writes_Sec 
Memory_Modified_Page_List_Bytes Memory_Standby_Cache_Core_Bytes 

Memory_Cache_Faults_sec Memory_System_Driver_Resident_Bytes 
Memory_Committed_Bytes Memory_Standby_Cache_Normal_Priority_Bytes 
Memory_System_Driver_total_Bytes Memory_Pool_Paged_Resident_Bytes 
Memory_Pages_Input_sec Memory_Write_Copies_sec 

 

III. RESULT AND DISCUSSION 

The supervised machine learning approach was used in this 
research as it provides a promising outcome by reducing 

errors [30], [31]. This research compares the performance of 

various notable classifiers such as Random Forest, Naive 

Bayes, J48, Decision Table, and Hoeffding Trees using five 

different classifiers. The accuracy percentage, false positive 

rate (FPR), precision, recall, and the F-Measure metrics are 

utilized to evaluate the research. Table 2 lists all five 

classifiers' results in the testing phase. 

TABLE II 
PERFORMANCE OF EACH CLASSIFIER 

 Classifier Accuracy 

(%) 

FPR Precision 

(%) 

Recall 

(%) 

F-

Measure 

(%) 

Random 

Forest 

99.74 0.26 99.70 99.70 99.70 

Naïve Bayes 99.48 0.52 99.50 99.50 99.50 

J48 99.74 0.26 99.70 99.70 99.70 

Decision 

Table 

98.70 1.30 98.70 98.70 98.70 

Hoeffding 

Tree 

99.48 0.52 99.50 99.50 99.50 
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Compared to the other classifiers, Random Forest and J48 

hold the highest accuracy of 99.74 percent. Decision Table, 

on the other hand, had the lowest accuracy percentage of 

98.70 percent. The results indicate that the Random Forest 

and J48 classifiers accurately identify ransomware outbreaks. 

The high accuracy percentage in both Random Forest and J48 

classifiers is backed up by a high precision percentage of 

97.70 percent. Furthermore, the high accuracy percentage 

obtained in the result may indicate that the feature selection 

strategy used in this research had an important part in 

producing superior results. 

A. Confusion Matrix 

The confusion matrix is used to summarize the 

performance of the classification model. Table 3 presents the 

results of two types of classification: normal and ransomware. 

For all classifiers, the result will be labeled as "ransomware" 

when the classification model anticipates the presence of 

ransomware activity and vice versa. 

J48 and Random Forest outperformed other classifiers in 
ransomware detection when all 82 actual ransomwares were 

classified as "ransomware". In terms of false predictions, both 

J48 and Random Forest classifiers hold the lowest number 

with only 1 case. Therefore, the J48 and Random Forest 

classifiers are more accurate in detecting ransomware attacks 

than the other classifiers. 

TABLE III 
CONFUSION MATRIX OF EACH CLASSIFIER 

Classifier Actual 

Classification 

Classified 

"Normal" 

Classified 

"Ransomware" 

Random 

Forest 

Actual normal 301 1 

Actual 

ransomware 

0 82 

Naïve Bayes Actual normal 301 1 

Actual 

ransomware 

1 81 

J48 Actual normal 301 1 

Actual 

ransomware 

0 82 

Decision 

Table 

Actual normal 300 2 

Actual 

ransomware 

3 79 

Hoeffding 

Tree 

Actual normal 301 1 

Actual 

ransomware 

1 81 

B. Receiver Operating Characteristics (ROC) Curve 

In addition to the performance matrix, the ROC curve for 

each machine learning classifier was calculated in this 

research. True Positive Rate (TPR) was selected as the 

detection rate that accurately classified the ransomware attack, 

whereas FPR was chosen as the detection rate that incorrectly 

classified the normal cases as a ransomware attack. The ROC 

curve is shown in Fig. 4. 

 
Fig. 4  ROC curve 

The horizontal axis of Fig. 4 depicts the error detection rate, 

whereas the vertical axis depicts the detection rate. The four 

lines represent the ROC curves of the machine learning 

classifier. The ROC curves are difficult to compare under the 

same conditions. As a result, the bottom portion of the curve 

was used to calculate the recognition accuracy (AUC). The 

AUC results can be used to establish if the classifiers are 

effective in detecting ransomware or not. There are two color 

ranges in the class. The perfect classification is represented by 

a range of 0.5 to 1, whereas a range of 0 to 0.5 represents an 

inadequate classification. According to the AUC results in 
Table 4, Random Forest and J48 classifiers possess the 

highest AUC values of 0.997. The outcome implies that both 

classifiers performed admirably. The ROC curve and AUC 

values given in this research demonstrated that all classifiers 

produced compelling and accurate results in detecting 

ransomware outbreaks. 

TABLE IV 
AUC RESULTS  

Classifier AUC Prediction 

Random Forest 0.997 Perfect prediction 
Naïve Bayes 0.993 Perfect prediction 

J48 0.997 Perfect prediction 
Decision Table 0.987 Perfect prediction 
Hoeffding Tree 0.992 Perfect prediction 

 

Additionally, Table 5 compares the time taken to train the 

classification model. The result shows that the Naïve Bayes 

classifier holds the fastest training time. Random Forest and 

J48 came in second and third, respectively, with the 

Hoeffding Tree trailing by a small margin. The result also 

suggests that the Decision Tree takes the longest time to train 
the classification model. 

TABLE V 

TIME TAKEN TO BUILD MODEL (SECONDS)  

Classifier AUC 

Random Forest 0.07 
Naïve Bayes 0.05 

J48 0.07 
Decision Table 0.46 
Hoeffding Tree 0.09 

IV. CONCLUSION 

This research examined the performance of five machine 

learning classifiers in detecting ransomware attacks: Random 

Forest, Naïve Bayes, J48, Decision Table, and Hoeffding 

Trees. A dynamic analysis approach that implements machine 

learning classifiers is used in this research, and the 

ransomware attacks were accurately classified according to 

the selected features. The research analyses the sample dataset 
and the Windows 7 engine to monitor changes in the features 

before and after the ransomware attack. The experiment's 

findings demonstrated that the Random Forest and J48 

classifiers had the highest percentage of accuracy in detecting 

a ransomware attack.  

Based on the findings, the following conclusions can be 

drawn: The results show that the Random Forest and J48 

classifier with dynamic analysis can detect ransomware 

attacks with remarkable performance. The findings highlight 

that the Random Forest tree size of 77 has produced a high 

accuracy of 97.74 percent, a high ROC of 99.7 percent, and a 
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low FPR of 0.26 with just 0.07 seconds of dataset training 

time. The reduction of classification features from 78 to 191 

positively improved the ransomware detection rate. The 

Random Forest classifier performed similarly to J48 in all 

tests, resulting in the most effective solution to detect 

ransomware attacks. 
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